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A B S T R A C T

In this paper, we assess the role of skilled versus unskilled migration for bilateral trade in a
flexible econometric model. Using a large data-set on bilateral skill-specific migration and a
flexible novel identification strategy, the functionally flexible impact of different levels of skilled
and unskilled immigration on the volume and structure of bilateral imports is identified in a
quasi-experimental design. We find evidence of a polarized impact of skill-specific immigration
on imports: highly concentrated skilled or unskilled immigrants induce higher import volumes
than a balanced composition of the immigrant base. This effect turns out particularly important
when institutions are weak. Regarding the structure of imports, we observe that skilled im-
migrants specifically add to imports in differentiated goods. Both bits of evidence are consistent
with a segregation of skill-specific immigrant networks and corresponding trade patterns.

1. Introduction

Immigration may affect trade and, in particular, imports for various reasons, of which the transaction-cost channel and the
preference channel are the most prominent ones.3 Empirical work on the role of bilateral immigration for bilateral trade typically
relies on three paradigms (see Gaston and Nelson, 2011; Parsons and Winters, 2014; and Felbermayr et al., 2015; for surveys of that
literature): (i) that the skill structure of migration matters for the impact on trade4; (ii) that the functional form of the impact of
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1 CEPR, CESifo, Ifo, and WIFO.
2 CESifo.
3 The impact of immigration through its transaction-cost-reducing and its preference-related effects are theoretically isomorphic and empirically

hard if not impossible to distinguish.
4 A number of the papers on trade and migration have considered different levels of skill and found that skilled immigrants are strongly associated

with trade creation, while intermediate and low levels of skill seem to have no such relationship (see Felbermayr and Jung, 2009; Hatzigeorgiou,
2010; Felbermayr and Toubal, 2012). The respective work tended to assume a (log-) linear relationship between trade and skill-specific immigration
and a random assignment (i.e., exogeneity) of immigration.
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migration on trade is linear or log-linear5; and (iii) that migration is endogenous even conditional on a linear function of other
determinants of bilateral trade.6 The argument in (i) results in a heterogeneous impact of migration on trade, depending on the skill-
specific composition of migration, and this impact heterogeneity is masked when using total instead of skill-specific immigration
variables in explaining trade. A violation of (ii) would mean that the estimates of the trade response to migration might be mean-
ingless to the extent that marginal changes in migration might have largely different effects on trade, depending on the level of
migration in the outset. And the argument in (iii) entails that bilateral migration is not exogenous conditional on a linear function of
the control variables, leading to inconsistent estimates of the relationship between migration and trade. Inter alia but not only, the
latter results from a non-log-linear impact of these covariates on trade in general (see Anderson and van Wincoop, 2003; Santos Silva
and Tenreyro, 2006) and a non-log-linear impact of migration on trade in particular.

This paper aims at considering the heterogeneity of the impact of skilled versus unskilled migration, the flexible nonlinearity of
that relationship, and the endogeneity of each of migration by skill type through employing an econometric approach which permits
considering a flexible impact of skill-specific migration on trade. This is done on the basis of a so-called generalized propensity score
(GPS) framework for continuous endogenous variables (treatments; skill-specific bilateral immigration in our case) and continuous
outcome (bilateral imports).

Exploiting this flexibility and using two large cross sections of bilateral stocks of skilled and unskilled immigrants and bilateral
import flows for 1990 and 2000, respectively, we are able to provide novel evidence on the effect of skill-specific immigration on
bilateral imports. In particular, the findings suggest that a concentration on skilled or unskilled immigrants leads to a bigger response
of bilateral imports than a mixed composition of the same level of total immigration. We place this polarization result at the door of
educational homophily. Hence, we interpret the findings as implicit evidence for the stronger bonding – and associated effects on trade
– of networks of migrants of the same skill type.7 Moreover, an improvement of the institutional quality in a migrant’s origin country
displays the biggest positive effect on bilateral imports if, at the same time, the mix of immigrants is skill-wise relatively balanced.

We rationalize these findings in a number of ways, but they are consistent, in particular, with the presence of (at least partially)
segmented skilled and unskilled migration networks and their effectiveness for trade in different domains of goods. Finally, the
nonlinear impact of the two types of immigration on import volume and specific categories thereof suggests that the insights gained
in this paper could not easily be derived in the framework of log-linear gravity equations as often used to analyze bilateral migration
stocks or flows.

The remainder of the paper is organized as follows. Section 2 introduces the concept of GPS estimation with multiple (or mul-
tivariate) treatments for inference of the impact of skilled versus unskilled immigration on bilateral imports. Section 3 introduces the
data used for inferences and associated descriptive statistics. Section 4 summarizes the results regarding the causal impact of bilateral
skilled versus unskilled immigration on bilateral international imports, including an analysis on the structure of imports and Section 5
provides a rationalization of those findings against the background of economic theory and earlier research on the nexus between
migration and trade. The last section concludes with a summary of the most important findings.

2. Econometric approach

2.1. General outline

For our purposes, we need a methodology that is able to handle two determinants of bilateral imports, namely skilled and
unskilled immigration, which are (i) continuous and endogenous in case of disregarding nonlinear effects of joint determinants of
trade flows and skill-specific immigration, and (ii) exhibit an impact on outcome (bilateral imports) whose functional form is un-
known ex ante. In many earlier empirical studies, bilateral migration may be an endogenous regressor in the model of bilateral trade
for two main reasons. On the one hand, the set of determinants of bilateral trade flows is specified in a relatively parsimonious and
log-linear way so that an exclusion of joint determinants of bilateral migration and trade flows is likely, whereby bilateral migration
is correlated with the residual. For instance, such a situation may root in the mis-specification of the functional form of the trade-cost
function or of consumers’ Armington preferences towards goods from different countries of origin. E.g., recent research suggests that
the trade-cost function may be nonlinear in trade-policy variables due to the evasion of tariffs and the avoidance of other policy
barriers on the part of foreign buyers (see, e.g., Fisman and Wei, 2004; Javorcik and Narciso, 2008, or Sequeira, 2016). Moreover,
factor endowments (see Bombardini et al., 2012) or factor costs and average firm productivity (see Mrazova et al., 2017). Finally, per-
capita income as a measure of expenditures may not be proportional to imports due to an absence of goods-market clearing (see
Dekle et al., 2007) or non-homothetic preferences (see Markusen, 1986). On the other hand, the functional form of the relationship

5 A handful of papers considered a nonlinear functional form. See Head and Ries (1998), Wagner et al. (2002); Bryant et al. (2004) for parametric
evidence and Egger et al. (2012a) for nonparametric evidence. However, the respective work focused on the impact of total rather than skill-specific
immigration on trade.

6 Egger et al. (2012a) permit total immigration to be endogenous in a nonparametric framework. However, that paper did not consider differential
effects of skilled and unskilled immigration. Aubry et al. (2018) and Orefice et al. (2019) use an instrumental variables strategy to address the
endogeneity of migration in trade equations. Ortega and Peri (2014), Alesina et al. (2016), and Egger et al. (2019) use instruments for both trade and
migration to consider the effects of these two openness variables on other outcomes (such as income and income taxation).

7 While transaction-cost and preference-related migration effects on trade are isomorphic, this is not true for homophily- or network-related
effects. The former lead to log-linear direct effects of migration on trade whereas the latter do not. However, it is not possible to test the role of
educational homophily of immigrants on imports against unknown alternatives.
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between bilateral migration and trade is not necessarily log-linear as is often assumed. With a log-nonlinear functional form, log
bilateral migration is again correlated with the residual in the trade model which generates endogeneity.

Econometric theory offers two alternative remedies to the problem of endogeneity: instrumental-variable estimation and esti-
mation invoking conditional mean independence. They rely on alternative catalogues of assumptions which are not nested.
Specifically, instrumental variables estimation requires that instruments are relevant and they are adequate, meaning that instru-
ments of migration are not correlated with the effect of any determinant of trade outcome which is excluded from the model. In
structural nonlinear general equilibrium models of trade and migration, this assumption is unlikely met. Approaches of conditional
mean independence require that all relevant determinants of (trade and) migration are included in the empirical model. The latter is
more plausible in empirical models with a relatively high explanatory power, as is the case in empirical models of trade and mi-
gration.

In this paper, we illustrate that the direct impact of immigration on imports is non-log-linear, depends on the level of immigration
in the outset, and the respective pattern is different for skilled and unskilled immigration.

2.2. Model outline

Let us denote the cross-sectional units of observation (here, country-pairs) by = …i N1, , and economic outcome (in the present
context, the value of bilateral goods imports) by Mi. The goal of this paper is to determine the causal impact of skilled and unskilled
immigration and their interaction on Mi.

For econometric identification, let us think of the levels of skilled and unskilled immigration as potentially endogenous treatments
(see Egger and Ehrlich, 2013). Yet, unlike in most of the evaluation literature in econometrics, these treatments are not binary but
continuous.8

The approach in this paper relies on the following ingredients. The determination of observed levels of skilled and unskilled
immigration in logs, Si and Ui as a function of the joint set of determinants of skilled and unskilled immigration levels, Zi. The latter
may include country-level variables and country-pair-level variables or source- and destination-country-fixed effects and country-pair
variables. In general, Zi may include polynomial terms of all non-binary main variables. As this is a nonlinear function of the
variables, concerns with weighting are relatively minor.9 Second, the joint density of the residuals of the models of Si and Ui, which is
called the generalized propensity score (GPS). We follow Hirano and Imbens (2005) to model this density as to be normal, here,
bivariate normal. Third, a flexible model of log trade (import) outcome as a function of skilled and unskilled log immigration as well
as the GPS. The latter establishes the so-called dose-response function and the treatment functions.

In particular, in this paper we will report on the average dose-response function of log imports to log skilled versus unskilled
immigration. The latter informs us how, on average and conditional on a flexible form of the covariates in Zi, imports change as either
unskilled or skilled migration changes. This approach rests on two fundamental assumptions:

Assumption 1 (Weak unconfoundedness). Weak unconfoundedness as in Hirano and Imbens (2005) and Imai and van Dyk (2004)
means that conditional independence – i.e., conditional on the components of Zi, the levels of skill-specific immigration are
randomized regarding import values. Hence, a particular level of skill-specific immigration depends systematically on the variables in
Zi but the remaining part is random. This assumption is not testable.

Assumption 2 (Balancing of the covariates). The balancing of covariates is a testable assumption, and it means that the functional form
of the density of the residual skill-specific immigration levels is appropriately chosen, in the sense that there is sufficient overlap
between observations with different levels of immigration Si, Ui but similar levels of both the covariates in Zi and the GPS, Gi. Hence,
for all strata of the GPS the probability of the different skill-specific immigration levels does not depend on the values of Zi. We will
illustrate in Section 4.1 that the data analyzed in this paper comply with this assumption.

2.3. Implementation and parametrization

The implementation of the approach proceeds in five steps.
In Step 1, we estimate reduced-form parametric first-stage models determining Si and Ui by ordinary least squares. The polynomial

order of the terms included in Zi is chosen according to an information criterion (the Akaike information criterion).
In Step 2, we utilize the estimated residuals from Step 1, (νSi, νUi), assume a functional form for the density function, namely

bivariate normality, and compute the GPS as

8 See Lee (2005) or Wooldridge (2010) for an extensive discussion of models with binary endogenous treatments. Also, see Lechner (2001) for
econometric models with multiple binary endogenous treatments. Finally, see Hirano and Imbens (2005) or Imai and van Dyk (2004) for a gen-
eralization of propensity score estimation with univariate continuous treatments. The novelty of the approach adopted in this paper is an application
of a generalization of the concept of generalized propensity scores, GPS, for multiple continuous treatments.

9 Santos Silva and Tenreyro (2006) present an approach to address estimation issues with gravity models of trade, and these issues may be relevant
also for migration. Specifically, they allude to a parameter bias if the true model is exponential and the stochastic term is heteroskedastic. However,
they do not consider models which are functions of polynomial forms of regressors, models where trade or migration are to be determined in the first
step of a two-stage regression problem, or data situations where there is a mass point at zero. Our approach involves a nonlinear index – and
eventually even a nonparametric function – in the second stage, which is a problem that is not covered by Santos Silva and Tenreyro (2006).
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where ŜS and ÛU are the variances of the disturbances in the equation for Si and Ui, respectively and ^ is the estimated covariance
between those disturbances (see, e.g., Green, 2011, for a general treatment of bivariate normals). With the treatments Si and Ui

measured in logarithmic terms, the normality assumption is approximately met.
In Step 3, we ensure common support, which means comparing only observations with similar levels of predicted skill-specific

immigration but different realized values of skill-specific immigration. The GPS is used to select comparable units. Hence, we restrict
our analysis to the common support of the estimated GPS, Ĝi. With continuous treatments, we have to discretize the sample into
immigration-treatment groups associated with different skill-specific immigration levels. As a benchmark, we split the data into four
groups in S Ui i space where we denote the group an observation i belongs to by Qi ∈ {1, 2, 3, 4}. Following Hirano and
Imbens (2005), Kluve et al. (2012), and, in particular, Flores et al. (2012), who all study problems with a single continuous treatment
variable, we evaluate the GPS at the median skill-specific immigration level of each group, independently of whether the observation
belongs to the group or not. Only those observations that are comparable across all groups are kept for the analysis such that each
observation has to fulfill the common-support criterion for all groups simultaneously. Naturally, the common-support sample de-
pends on the number of groups we choose for the discretization. We report the analysis with four groups and note that the results are
very similar when using one of nine or even sixteen groups.

Step 4 is concerned with assessing the validity of the balancing assumption. First, use again the groups in S Ui i space as defined
in Step 3. Second, we split the sample of observations within each group in Ĝi-space into blocks determined by the GPS evaluated at
the median treatment level of the respective group. We take observations with a similar level of GPS evaluated at the median
treatment level of a group and compare each covariates between observations in and outside of the same group. This indicates
whether the covariates differ significantly (i.e., are unbalanced) across groups once we condition on the GPS. Alternatively, we follow
Imai and van Dyk (2004) and regress each covariate on the treatment variables with and without conditioning on the distribution of
the GPS. Ideally, if the GPS absorbs all information relevant for skill-specific immigration levels, the covariates Zi are uncorrelated
with Si and Ui, once we condition on the distribution of the GPS.

Step 5 pertains to estimating parametric and nonparametric regressions of the second-stage, outcome equation. The parametric
model specifies the expectation of log imports conditional on log skill-specific immigration levels E(Mi|Si, Ui, Gi), where the vector Hi

depends on the polynomial function of the terms {Si, Ui, Gi} only (apart from a constant). We choose two alternative forms of E(Mi|Si,
Ui, Gi), one of polynomial order which is selected by the Akaike information criterion in an ordinary least squares framework and one
which is nonparametric.

The parameter estimates from this regression are neither interpretable nor of interest themselves. The reason is that E(Mi|Si, Ui, Gi)
only represents a so-called unit-level dose-response function, where the marginal effect of log immigration levels {Si, Ui} depends on
the level of Zi and Gi. What one would like to know is an average dose-response function, where the marginal effect of treatment is
independent of Zi. The latter can be obtained as follows. First, one considers the range of skill-specific immigration levels of interest.
Second, one discretizes these intervals into bins on a grid and calculates all possible levels of the GPS associated with these levels.
Third, one computes the average of predicted log imports for each of the grid cells in log skill-specific-immigration space. The average
dose-response function is the relationship between log imports and levels of potential log skilled and unskilled immigration on the
grid. We will compute the average dose-response function for a 40 · 40 grid in skill-specific-immigration space.

Both the parametric polynomial and even more so the nonparametric versions of the average dose-response function are relatively
flexible and they can best be visualized graphically. The confidence bounds of the parametric and nonparametric estimators can be
estimated by bootstrapping all estimation steps together, including the common-support restriction, the first-stage estimation of
G s u^ ( , ),i and the second-stage regressions (according to Efron and Tibshirani (1993), 200 replications should be sufficient for this).

3. Data and descriptive statistics

The variables entering the analysis encompass, bilateral imports, skilled and unskilled immigration stocks, and direct drivers of
bilateral imports as well as direct drivers of skilled and unskilled bilateral immigration. All variables entering the analysis may be
broadly grouped into dependent variables and independent variables.

3.1. Dependent variables

The dependent variables are bilateral import flows (which we also refer to as outcome), Mi, and bilateral stocks of skilled and
unskilled immigrants (which we refer to as treatments), Si and Ui, respectively. The goal will be to determine the impact of (en-
dogenous) bilateral skilled and unskilled immigration treatments on bilateral import outcome. Bilateral skill-specific immigration
data are available for the years 1990 and 2000 from Docquier et al. (2009) for OECD destination countries and from
Artuc et al. (2015) for non-OECD destination countries. This dictates the sample coverage of the data in the empirical analysis. We
define skilled immigrants as those with at least a secondary level of education. Note that our results are invariant to an alternative
aggregation with skilled immigrants characterized by at least tertiary education. As the outcome, we use data on bilateral imports
from the United Nations’ Comtrade Database for the average year within the period 1991-95 and 2001-05, respectively. Accordingly,
we consider immigration and imports for two time periods. In order to determine the effect of immigration on the structure of imports
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we distinguish between homogeneous and differentiated goods according to the classification by Rauch (1999). We assign sectors to
the respective classifications, using the Standard International Trade Classification (SITC) three-digit data. This obtains an additional
dependent variable measuring the ratio between differentiated and homogeneous goods imports denoted by M M/i

D
i
H .

Altogether, we cover 98 countries of origin and 29 (65) OECD (Non-OECD) countries of residence of migrants and trade between
those countries in our analysis (see the Appendix for a list). Table 1 provides some descriptive features of the data on the dependent
variables covered in our analysis. We measure immigration as well as imports in logarithmic terms such that our empirical analysis
captures only country pairs characterized by positive values of both bilateral imports and immigration of skilled and unskilled.

In general, we follow Hirano and Imbens (2005) in discarding observations with a mass point at zero in either imports and skilled
or unskilled immigration. Hence, the treatment effects should be interpreted as ones on the treated (where some immigration of
either form as well as some imports exist).

3.2. Independent variables

As described in the previous section, we have to employ independent variables – determinants of bilateral import flows as well as
of skilled and unskilled immigration stocks as elements in the vector Zi – in order to remove the selection bias in an assessment of the
impact of the two types of immigration Si and Ui on bilateral imports Mi of country-pair i (see Felbermayr and Jung, 2009; Mayda,
2010; Felbermayr et al., 2010; Felbermayr and Toubal, 2012; for important determinants of bilateral migration).

Generally, the vector of observables Zi includes both continuous and multi-valued discrete variables for both exporters/countries
of origin and importers/countries of residence in a flexible 3rd-order polynomial functional form and binary variables in a linear
functional form.10 Specifically, we include a parametric (polynomial) function of exporter/origin- and importer/residence-specific
log GDP in current U.S. dollars, log GDP per capita in purchasing-power-parity terms, and log population to account for effects of
economic market size, per-capita income, and population size in a fairly flexible way. These variables are taken from the World
Bank’s World Development Indicators 2009. Moreover, we control for origin- and residence-country GINI coefficients, unemployment
rates, life expectancies, fertility rates, literacy rates, and real exchange rates between residence and origin countries as measures of
unemployment risk, inequality, and economic well-being beyond per-capita income. These variables come from the World Bank’s
World Development Indicators 2009, the CIA World Factbook, and United Nations’ Educational, Scientific, and Cultural Organization
(UNESCO). Note that the just-mentioned variables are all specific to countries but do not combine any information on exporters
(source countries) and importers (destination countries). To address the latter, we include (a third-order polynomial of) the following
two variables that had been introduced in the trade literature by Helpman (1987): the similarity in GDP between these two countries,

= + +( ) ( )SIMI log 1i
GDPO

GDPO GDPR
GDPR

GDPO GDPR

2 2i
i i

i
i i

; and the absolute difference in GDP per capita as a proxy of capital-labor ratios,

=RELKL GDPPCO GDPPCRlog( ) log( )i i i . Clearly, these variables are highly – though not perfectly – correlated with the third-
order polynomial terms about log GDP and log population. However, as said above, they add explanatory power by linking data of
country i with ones of country j.

Furthermore, we control for bilateral distance between residence and origin countries as a continuous pair-i-specific geographical
determinant of immigration and imports as well as for common language, colonial relationship, common religion, goods-trade-
agreement membership, services-trade-agreement membership, bilateral migration impediments, OECD membership, and mem-
bership in the Warsaw Pact as pair-specific binary geographical, cultural, political, and economic control variables. All geographical
variables are based on information from the Centre d’Études Prospectives et d’Informations Internationales’ (CEPII) geographical

Table 1
Descriptive statistics dependent variables.

Mean Std. dev. Min Max Obs.

OECD residence countries
ln(Ui) 5.977 2.594 0.000 15.310 3178
ln(Si) 6.725 2.471 0.000 14.468 3178
ln(Mi) 4.647 3.056 −8.517 12.346 3178
M M/i

D
i
H 5.274 59.683 0.000 2908.723 2669

Non-OECD residence countries
ln(Ui) 5.292 2.798 0.000 14.619 1939
ln(Si) 4.575 2.408 0.000 11.451 1939
ln(Mi) 3.324 2.988 −8.517 11.023 1939

Notes: We have observations for 98 countries of origin and 29 OECD countries of residence of migrants as well as 65 Non-OECD countries of
residence. Countries of residence are importers of goods while countries of origin are the exporters. Ui and Si refer to skilled and unskilled im-
migrants where we define skilled immigrants as those with at least secondary level of education. Mi denotes total bilateral imports while Mi

D and Mi
H

refer to differentiated and homogeneous goods imports. The classification of goods follows Rauch (1999). For most pairs with non-OECD residence
countries we lack data on imports by goods classification such that we refrain from distinguishing between differentiated and homogeneous goods
trade for these pairs.

10 Binary variables enter linearly in order to keep the degree of multicollinearity of the model reasonably low. In general, we will use acronyms of
the variables for the sake of brevity in tables. These acronyms are defined in Table 2.
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database. Trade agreement indicator variables as well as data on migration impediments are based on information from the World
Trade Organization (WTO).

Also, we include a number of other control variables for both the country of origin and residence, capturing political and in-
stitutional factors that may be relevant for both migration and trade. First of all, we include measures of the origin- and residence-
specific number of armed conflicts from the Peace Research Institute at Oslo, the corruption perception index from Transparency
International, political freedom (the POLITY-IV index) from the Center for Systemic Peace (see Marshall et al., 2011), and a number
of measures determining labor market features from the International Labor Organization (ILO): the bargaining power index, the
working condition index, the worker discrimination index, and the child labor index. Second, we capture several dimensions of
institutional quality from the World Bank’s Governance Indicators.11 All time-variant covariates in Zi are measured prior to the
endogenous variables Mi, Si, and Ui in each of the two periods.12

Table 2 provides information on moments of the data for all (first-order terms of) independent variables akin to both blocks of
Table 1.

4. Results

4.1. Multivariate GPS estimation, common support, and the balancing property

We include all main effects of the covariates listed in Table 2 together with quadratic and cubic terms of all non-binary regressors
in the regressions explaining Si and Ui.13 Altogether, there are 110 explanatory variables in the two equations when not using (source-
and destination) country-fixed effects. When using country-fixed effects, the number of regressors is reduced to 11 country-pair-
specific ones.

We report parameter estimates and standard errors for the 3rd-order polynomial reduced-form-model specifications for Si and Ui

based on 110 regressors in Table 3 and based on 11 regressors (plus country-fixed effects) in Table 4. The coefficients are impossible
to interpret due to the nonlinear form of the first-stage regressions in Table 3. However, it is generally the case with propensity score
estimation that the specific parameters and marginal effects of covariates in the treatment equation(s) are of subordinate interest.
What matters is that the joint contribution of the covariates to the variances of Si and Ui is decently large, and that the covariates are
balanced (for given estimated values of the GPS).

Indeed, the regressions do feature a decent predictive power with adjusted R2s of about 0.73 and 0.80 for Si and Ui, respectively,
in Table 3 and ones of 0.76 and 0.82 in Table 4. The high F-statistics in the two tables point to the same conclusion. Hence, the
covariates are jointly highly relevant. Models based on 1st-order or 2nd-order polynomials would have achieved lower adjusted R2s
of (0.64,0.72) and (0.70,0.76), respectively, in Table 3. Hence, we conclude that the third-order polynomial specification in Table 3
works better than lower-order polynomial specifications and almost as well as the specifications with country-fixed effects in Table 4.

Based on the estimates in Tables 3 and 4, one may compute the GPS explicitly by assuming bivariate normality of the disturbances
as in (A.2). With the treatments measured in logarithmic terms, the normality assumption is approximately met. What remains to be
enforced is common support of the GPS as in Step 3 in Section 2.3, and what ought to be checked is whether the common-support
assumption is tenable as outlined in Step 4 in Section 2.3. We do this for four groups (called Qi above) in S Ui i-space and with 16
blocks. Enforcing common support leads to a sample of 2525 observations. We illustrate the distribution of t-statistics about the
equivalence of the averages of each linear term of the covariates in Fig. 1, where Panel A refers to the unconditional covariate
comparison and Panel B to the comparison conditioning on the GPS.

Two insights can be gained from an inspection of Fig. 1. First, a large mass (namely 60% for the four-group common-support
sample) of the t-values of unconditional comparisons lie outside of the +[ 2.576, 2.576] interval which (approximately) indicates
significance levels of less than one percent. When taking t-statistics in absolute terms, the interquartile range amounts to [1.68,6.46].
By way of contrast, only a very small mass of the distribution of t-values of conditional comparisons (on blocks of the GPS) lie outside
of that interval (0.5 percent of the t-values are bigger than 2.576 in absolute terms). The interquartile range of absolute t-values for
the conditional comparisons amounts to [0.26,0.80]. This is evident from the much more narrowly-waisted distribution of condi-
tional-comparison t-statistics around zero relative to the unconditional-comparison t-statistics in Panels A and B of Fig. 1. Second, the
mean and median values of the absolute t-statistics – which we report at the bottom of the figure – are much smaller once we condition
on the GPS. For instance, among the unconditional-comparison t-statistics, the average absolute value is 4.86 and the median value is
3.30. Among the conditional-comparison t-statistics, the average absolute value is 0.60 and the median value is 0.48. This illustrates

11 While we only include covariates which are specific to one or both countries in pair i, it should be noted that the results are robust to the
inclusion of third-country effects with regard to all of the origin- and residence-country-specific covariates on treatment (see Egger et al., 2012b, for
the working paper version of this manuscript). The inclusion of the latter would serve the purpose of accounting for interdependence of origin and
residence countries in supplying and attracting migrants (see Anderson, 2011).

12 Trade agreement membership, corruption perception, and ILO’s indices on labor market conditions are measured in 1990 and 2000. OECD
membership, geographical, cultural, historical variables, and bilateral migration impediments are time-invariant. All other elements of Zi are
measured as averages over 1986-90 and 1996-00 for the two periods covered, respectively.

13 The 3rd-order polynomial model specification is not arbitrary. We did a selection of the optimal order of the polynomial on grounds of the
Akaike information criterion searching across models which involve 1st-order up to 5th-order polynomials. Based on this search, we selected the
3rd-order polynomial version as the preferred one, since no substantial decrease in the Akaike criterion could be achieved when choosing a higher-
order polynomial.
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that conditioning on the GPS is extremely powerful in the data. Conditioning on the GPS and enforcing common support substantially
raises the comparability of country pairs in the dimensions of interest. Hence, we hypothesize that there is little chance that the
observable variables included in the empirical model explaining Si and Ui confound the impact of Si and Ui on bilateral imports, Mi.

The alternative balancing test based on Imai and van Dyk (2004) and Kluve et al. (2012) supports this conclusion, as can be seen
from the online appendix. Hence, we may proceed to estimate the dose-response function by means of parametric and nonparametric
estimators as outlined in Step 5 of Section 2.3.

4.2. Parametric estimates of the multivariate dose-response and treatment-effect functions

Utilizing the GPS as a compact balancing score to reduce the endogeneity bias of Si and Ui in determining Mi by invoking the

Table 2
Descriptive statistics independent variables.

Acronyms Description Mean Std. dev. Min Max
GDPR i_ log GDP residence country 25.504 1.804 20.789 29.742
GDPO i_ log GDP origin country 24.770 2.018 19.859 29.742
GDPPCR i_ log GDP per capita residence country 9.344 0.825 5.950 10.317
GDPPCO i_ log GDP per capita origin country 8.646 1.142 5.950 10.317
POPR i_ log population residence country 16.451 1.347 13.400 20.930
POPO i_ log population origin country 16.657 1.443 13.400 20.930
GINIR i_ GINI coefficient residence country 35.865 8.815 23.005 60.060
GINIO i_ GINI coefficient origin country 38.631 9.494 23.310 67.000
UNEMPR i_ unemployment rate residence country 7.824 4.552 0.030 27.726
UNEMPO i_ unemployment rate origin country 8.366 5.151 0.030 27.726
REALEXCH i_ real exchange rate btw, residence and origin country −0.359 3.716 −21.227 21.538
CPIR i_ corruption perception index residence country 6.235 2.341 1.600 9.300
CPIO i_ corruption perception index origin country 4.918 2.320 1.600 9.300
ILOBARGAINR i_ ILO bargaining power index residence country 27.440 16.144 0.000 50.500
ILOBARGAINO i_ ILO bargaining power index origin country 25.429 16.179 0.000 50.500
ILOLABORR i_ ILO working condition index residence country 34.596 16.235 0.000 56.000
ILOLABORO i_ ILO working condition index origin country 29.149 16.297 0.000 56.000
ILODISCRR i_ ILO worker discrimination index residence country 24.521 13.128 0.000 43.500
ILODISCRO i_ ILO worker discrimination index origin country 22.339 13.617 0.000 43.500
ILOCHILDR i_ ILO child labor index residence country 3.359 4.283 0.000 12.500
ILOCHILDO i_ ILO child labor index origin country 2.793 4.048 0.000 12.500
POLITY R i2 _ Polity IV index residence country 7.445 4.979 −10.000 10.000
POLITY O i2 _ Polity IV index origin country 5.026 6.113 −10.000 10.000
LIFEEXPR i_ life expectancy residence country 73.966 5.026 35.607 80.247
LIFEEXPO i_ life expectancy origin country 69.956 7.743 35.607 80.247
FERTILR i_ fertility residence country 2.130 1.020 1.154 7.720
FERTILO i_ fertility origin country 2.752 1.496 1.154 7.720
SIMI i_ Similarity index −2.218 1.479 −8.640 −0.693
RELKL i_ Relative endowment index 1.367 1.063 0.001 4.367
DIST i_ log distance btw. residence and origin country 8.397 1.013 4.088 9.891
LITR i_ literacy rate residence country 82.300 11.702 13.478 99.790
LITO i_ literacy rate origin country 78.545 17.410 13.478 99.790
WARSAW i_ member of Warsaw Pact 0.029 0.168 0.000 1.000
CONFLICTR i_ number of armed conflicts residence country 0.094 0.257 0.000 1.000
CONFLICTO i_ number of armed conflicts origin country 0.180 0.331 0.000 1.000
COMLANG i_ common language in residence and origin country 0.142 0.349 0.000 1.000
COLONY i_ colonial relationship btw. residence and origin country 0.041 0.199 0.000 1.000
GTA i_ goods trade agreement 0.157 0.364 0.000 1.000
STA i_ service trade agreement 0.103 0.304 0.000 1.000
OECDO i_ OECD member 0.378 0.485 0.000 1.000
RELIGION i_ common religion in residence and origin country 0.271 0.445 0.000 1.000
MIGIMPED i1_ migration impediments: re-admission agreements 0.022 0.146 0.000 1.000
MIGIMPED i2_ migration impediments: social security system 0.214 0.410 0.000 1.000
MIGIMPED i3_ migration impediments: exchange of information 0.176 0.381 0.000 1.000
MIGIMPED i4_ migration impediments: labor market regulation 0.235 0.424 0.000 1.000
MIGIMPED i5_ migration impediments: respect for human rights 0.160 0.367 0.000 1.000
GOVCCO i_ institutions origin country: control of corruption 0.396 1.136 −1.374 2.586
GOVGEO i_ institutions origin country: government effectiveness 0.443 1.019 −1.461 2.171
GOVPSO i_ institutions origin country: political stability 0.109 0.947 −2.510 1.668
GOVRLO i_ institutions origin country: rule of law 0.296 1.038 −1.728 1.938
GOVRQO i_ institutions origin country: regulatory quality 0.465 0.882 −2.098 2.247
GOVAVO i_ institutions origin country: absence of violence 0.330 0.945 −1.883 1.765
Observations 5117

Notes: We summarize information for those observations that have non-missing, positive levels of Mi, Ui, and Si as well as for all covariates. When
estimating the effects for subgroups of bilateral imports the respective dependent variable determines the number of observations (see Table 1).
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Table 3
First-stage estimation of GPS.

Si Ui

Coef. Std.err. Coef. Std.err.

Const. −1838.714* (1052.952) −8207.983*** (892.629)
GDPR i_ 89.709* (45.857) 252.820*** (38.060)
GDPR i_ 2 −3.416** (1.728) −9.576*** (1.431)

GDPR i_ 3 0.042* (0.022) 0.118*** (0.018)
GDPO i_ −8.897 (5.791) 1.479 (4.986)
GDPO i_ 2 0.414* (0.231) −0.014 (0.198)

GDPO i_ 3 −0.006** (0.003) −0.000 (0.003)
GDPPCR i_ 234.677 (384.703) 193.388 (306.637)
GDPPCR i_ 2 −24.629 (40.153) −20.043 (31.969)

GDPPCR i_ 3 0.882 (1.398) 0.725 (1.112)
GDPPCO i_ 10.338 (7.470) 10.644* (6.368)
GDPPCO i_ 2 −1.598* (0.901) −1.547** (0.765)

GDPPCO i_ 3 0.075** (0.036) 0.070** (0.030)
POPR i_ 13.970 (45.420) −113.033*** (39.561)
POPR i_ 2 −0.325 (2.728) 7.236*** (2.379)

POPR i_ 3 0.001 (0.054) −0.145*** (0.048)
POPO i_ −21.506*** (5.355) −24.894*** (4.219)
POPO i_ 2 1.334*** (0.314) 1.547*** (0.247)

POPO i_ 3 −0.026*** (0.006) −0.031*** (0.005)
GINIR i_ −4.512** (2.224) −19.294*** (1.907)
GINIR i_ 2 0.133** (0.066) 0.582*** (0.056)

GINIR i_ 3 −0.001** (0.001) −0.006*** (0.001)
GINIO i_ −0.110 (0.138) −0.278** (0.116)
GINIO i_ 2 0.003 (0.003) 0.006** (0.003)

GINIO i_ 3 −0.000 (0.000) −0.000** (0.000)
UNEMPR i_ 0.584*** (0.098) 0.811*** (0.079)
UNEMPR i_ 2 −0.059*** (0.012) −0.094*** (0.010)

UNEMPR i_ 3 0.002*** (0.000) 0.003*** (0.000)
UNEMPO i_ 0.245*** (0.048) 0.202*** (0.038)
UNEMPO i_ 2 −0.018*** (0.004) −0.013*** (0.003)

UNEMPO i_ 3 0.000*** (0.000) 0.000*** (0.000)
REALEXCH i_ 0.040*** (0.015) 0.028** (0.012)
REALEXCH i_ 2 −0.003 (0.002) −0.004** (0.002)

REALEXCH i_ 3 0.000 (0.000) 0.000 (0.000)
SIMI i_ 0.004 (0.182) 0.095 (0.144)
SIMI i_ 2 0.039 (0.060) 0.050 (0.047)

SIMI i_ 3 0.004 (0.006) 0.003 (0.005)
RELKL i_ 0.514* (0.264) 0.812*** (0.210)
RELKL i_ 2 −0.125 (0.199) −0.349** (0.156)

RELKL i_ 3 −0.006 (0.036) 0.034 (0.029)
CPIR i_ −12.973*** (2.368) −27.575*** (2.091)
CPIR i_ 2 2.049*** (0.372) 4.516*** (0.328)

CPIR i_ 2 −0.101*** (0.019) −0.231*** (0.017)
CPIO i_ 2.032*** (0.331) 0.848*** (0.263)
CPIO i_ 2 −0.332*** (0.063) −0.127** (0.050)

CPIO i_ 3 0.018*** (0.004) 0.007** (0.003)
ILOBARGAINR i_ −0.096** (0.046) −0.029 (0.038)
ILOBARGAINR i_ 2 0.001 (0.002) −0.003* (0.002)

ILOBARGAINR i_ 3 −0.000 (0.000) 0.000*** (0.000)
ILOBARGAINO i_ −0.034* (0.018) −0.022 (0.016)
ILOBARGAINO i_ 2 0.002*** (0.001) 0.002** (0.001)

ILOBARGAINO i_ 3 −0.000** (0.000) −0.000** (0.000)
ILOLABORR i_ −0.150** (0.075) −0.246*** (0.062)
ILOLABORR i_ 2 0.008*** (0.002) 0.009*** (0.002)

ILOLABORR i_ 3 −0.000*** (0.000) −0.000*** (0.000)
ILOLABORO i_ 0.015 (0.019) −0.035** (0.017)
ILOLABORO i_ 2 0.001 (0.001) 0.002*** (0.001)

ILOLABORO i_ 3 −0.000** (0.000) −0.000*** (0.000)
ILODISCRR i_ 0.166* (0.097) 0.140* (0.081)
ILODISCRR i_ 2 −0.004 (0.004) −0.001 (0.003)

(continued on next page)
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underlying assumptions, we present parametric dose-response-function estimates in Table 5 for the GPS based on first-stage models
with and without country-fixed effects. The standard errors are estimated by a block-bootstrap procedure (with 200 replications) in
order to respect two features: first, that each unit i is observed in two years (1990 and 2000) so that the variance-covariance matrix
may have i-specific blocks and, second, that the GPS Gi is not observed but estimated by Ĝi. We ensure the common-support criterion

Table 3 (continued)

Si Ui

Coef. Std.err. Coef. Std.err.

ILODISCRR i_ 3 0.000 (0.000) −0.000 (0.000)
ILODISCRO i_ −0.037* (0.021) 0.020 (0.017)
ILODISCRO i_ 2 0.001 (0.001) −0.002* (0.001)

ILODISCRO i_ 3 −0.000 (0.000) 0.000* (0.000)
ILOCHILDR i_ 0.777*** (0.154) 1.016*** (0.132)
ILOCHILDR i_ 2 −0.184*** (0.035) −0.244*** (0.031)

ILOCHILDR i_ 3 0.010*** (0.002) 0.014*** (0.002)
ILOCHILDO i_ 0.121* (0.068) 0.034 (0.053)
ILOCHILDO i_ 2 −0.033** (0.016) −0.014 (0.012)

ILOCHILDO i_ 3 0.002** (0.001) 0.001 (0.001)
POLITY R i2 _ −0.705 (0.814) 1.436** (0.705)
POLITY R i2 _ 2 0.016 (0.170) −0.343** (0.146)

POLITY R i2 _ 3 0.003 (0.009) 0.018** (0.008)
POLITY O i2 _ −0.016 (0.017) −0.004 (0.014)
POLITY O i2 _ 2 0.000 (0.002) −0.001 (0.001)

POLITY O i2 _ 3 0.001** (0.000) 0.000 (0.000)
LIFEEXPR i_ 16.680 (34.155) 248.816*** (28.994)
LIFEEXPR i_ 2 −0.248 (0.450) −3.311*** (0.382)

LIFEEXPR i_ 3 0.001 (0.002) 0.015*** (0.002)
LIFEEXPO i_ −1.766*** (0.370) −1.502*** (0.294)
LIFEEXPO i_ 2 0.031*** (0.006) 0.025*** (0.005)

LIFEEXPO i_ 3 −0.000*** (0.000) −0.000*** (0.000)
FERTILR i_ 18.510* (9.914) 48.984*** (8.322)
FERTILR i_ 2 −7.695 (5.407) −27.822*** (4.532)

FERTILR i_ 3 1.073 (0.983) 5.511*** (0.826)
FERTILO i_ −1.023*** (0.386) −0.781** (0.307)
FERTILO i_ 2 0.288*** (0.101) 0.203** (0.080)

FERTILO i_ 3 −0.025*** (0.008) −0.017*** (0.006)
DIST i_ 3.659 (3.100) 0.016 (3.047)
DIST i_ 2 −0.666 (0.409) −0.154 (0.395)

DIST i_ 3 0.031* (0.018) 0.009 (0.017)
LITR i_ 2.662 (5.989) 3.363 (5.017)
LITR i_ 2 −0.043 (0.071) −0.057 (0.060)

LITR i_ 3 0.000 (0.000) 0.000 (0.000)
LITO i_ −0.009 (0.047) −0.045 (0.036)
LITO i_ 2 −0.000 (0.001) 0.001 (0.001)

LITO i_ 3 0.000 (0.000) −0.000 (0.000)
WARSAW i_ 1.664*** (0.410) 1.810*** (0.327)
CONFLICTR i_ −0.473 (0.368) −1.101*** (0.307)
CONFLICTO i_ 0.013 (0.096) 0.027 (0.077)
COMLANG i_ 0.837*** (0.110) 1.174*** (0.085)
COLONY i_ 1.991*** (0.164) 1.602*** (0.134)
GTA i_ 0.367*** (0.129) 0.391*** (0.101)
STA i_ −0.335** (0.151) −0.314*** (0.120)
OECDO i_ 0.302* (0.164) −0.123 (0.126)
RELIGION i_ 0.372*** (0.068) 0.284*** (0.054)
MIGIMPED i1_ 0.686* (0.385) 0.300 (0.272)
MIGIMPED i2_ 0.629 (0.498) 0.442 (0.379)
MIGIMPED i3_ 0.447* (0.242) 0.366* (0.198)
MIGIMPED i4_ −0.765 (0.476) −0.443 (0.358)
MIGIMPED i5_ −0.552** (0.221) −0.299 (0.183)
adj. R2 0.73 0.80
F-Stat 68.27 128.03
AIC 11,180 9754
Obs. 3178 3178

Notes: ⁎⁎⁎, ⁎⁎, * denote significance levels at 1, 5, and 10%, respectively.
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within each bootstrap replication such that the sample size may vary slightly across block-bootstrap draws.
The point estimates of the second-stage regression are not immediately informative with regard to the effect of immigration on

imports. However, the significance of the terms provides information on the severeness of the endogeneity issue and the performance
of the propensity score in absorbing information that determines skill-specific immigration treatment and import outcome. The main
effects and interactive terms involving Ĝi are jointly highly significant (the F-statistic on all terms involving Ĝi is 14.02), which is a
strong indication of selectivity across different levels of Si and Ui. Hence, the GPS is relevant and helps reducing the bias of the
estimated response of (log) bilateral imports (Mi) to changes in (log) bilateral immigration of the skilled (Si) and the unskilled (Ui).
Controlling for observable information affecting selection into treatment, we still observe that skilled and unskilled immigration have
a substantial impact on imports as is evident from the joint significance of the S and U terms.

Note that with import outcome and skilled as well as unskilled immigration treatment, the average dose-response function is a
three-dimensional object. We present the associated three-dimensional plot in the online appendix. With the parametric estimates, we
choose to illustrate it in the main text by way of two-dimensional plots, one pertaining to log unskilled and one to log skilled
immigrants on the abscissa. We plot the loci of the dose-response function for the 25th, 50th, and 75th percentiles of the yet other
immigration treatment, respectively. In Fig. 2, we illustrate the average dose-response function for log skilled immigration in Panel A
and the one for log unskilled immigration in Panel B. The 90% confidence intervals for each locus are indicated by broken lines.

A key insight from Fig. 2 is that import volume is not maximized at the diagonal where skilled and unskilled immigration reach
similar levels but at the edges where the immigration stock is either dominated by skilled or by unskilled individuals. Hence, our
results suggest that bilateral import flows are stimulated mostly by homogeneous immigrant communities while a heterogeneous mix
between skilled and unskilled immigrants yields ceteris paribus a lower import volume. According to the results, there is a statis-
tically significant (at 5%) positive level of log imports for almost any form of bilateral immigration. However, Fig. 2 suggests that the
import-maximizing immigration treatment corresponds to a polarization of immigrant types, irrespective of whether unskilled or
skilled immigration dominates. Note that the range of observed skilled-unskilled immigration combinations does not support all of
the cells in the figures. However, the polarization result is found also in the S Ui i-subspace that is supported by the data. Overall,
this result is consistent with (though not a test against unspecified alternatives of) what we may call educational homophily. Hence, if
immigrant networks worked more strongly within skill groups and bigger networks of migrants within skill type had a larger sti-
mulating effect on imports, this would be consistent with what we see in the figure. The data do not support a statistically significant
positive marginal effect of skilled immigration in areas where unskilled immigration dominates, and similar conclusions emerge for
the opposite case i.e. for unskilled immigration in areas with predominantly skilled immigration levels.

4.3. Nonparametric estimates of the multivariate dose-response and treatment-effect functions and general notes on the functional form

The above results may depend to some extent on the functional form – and its potential mis-specfification – in the estimation of
the average dose-response function. To avoid a bias resulting from ill-suited functional-form assumptions, we present nonparametric
estimates of the average dose-response function and illustrate it in Fig. 3, again using the common-support sample with four groups as
a reference point. However, it turns out that the functional form of the nonparametric function is not as smooth that two-dimensional
plots can be used for illustration. Therefore, we present the corresponding results by a three-dimensional plot, akin to the one
presented for the parametric function in the online appendix.

In spite of the higher degree of nonlinearity, the general u-shape around the diagonal is found again and is clearly visible in Fig. 3.
Bilateral imports are maximized at either a high concentration of skilled or unskilled immigrants while a balanced mix of the two
groups yields a lower level of bilateral imports. A noticeable difference to the parametric plot in the online appendix is the asymmetry

Table 4
First-stage estimation of GPS with country-fixed effects.

Si Ui

Coef. Std.err. Coef. Std.err.

WARSAWi 2.426*** (0.409) 2.206*** (0.319)
COMLANGi 0.710*** (0.109) 0.999*** (0.087)
COLONYi 2.021*** (0.159) 1.622*** (0.131)
RELIGIONi 0.402*** (0.068) 0.279*** (0.056)
SIMIi −0.146*** (0.044) −0.118*** (0.035)
RELKLi 0.133 (0.107) 0.082 (0.089)
MIGIMPED1i 0.854** (0.418) 0.222 (0.291)
MIGIMPED2i 1.614*** (0.561) 1.218*** (0.433)
MIGIMPED3i −0.045 (0.310) −0.250 (0.253)
MIGIMPED4i −1.649*** (0.545) −0.965** (0.409)
MIGIMPED5i −0.737*** (0.255) −0.250 (0.214)
adj. R2 0.76 0.82
F-Stat 88.34 124.02
AIC 10849 9583
Obs. 3,178 3,178

Notes: ⁎⁎⁎, ⁎⁎, * denote significance levels at 1, 5, and 10%, respectively.
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of the nonparametric surface at the edges with full polarization. According to the nonparametric average dose-response function, a
concentration of high-skilled immigrants leads to relatively more imports than a concentration of unskilled immigrants, but we
estimate for either of them a higher level of imports than at the diagonal. The evidence on the polarization is somewhat less
pronounced with the nonparametric specification than with the parametric one. However, the data support is relatively weak at very
extreme configurations of skilled and unskilled immigration stocks. However, the nonparametric average dose-response confirms the
main qualitative parametric findings: an immigrant mix which is polarized and skewed towards either the skilled or the unskilled
maximizes bilateral imports as compared to a balanced mix of skilled and unskilled immigrants.

In Table 6, we discuss some generic results regarding the appropriate functional form of the relationship of interest. To this end,
comparisons of models which are log-linear, quadratic, and nonparametric – each of them with and without conditioning on the GPS
– are interesting.14 We choose a tabular representation of the findings when comparing the non-overlap between the respective model
predictions. The latter is based on the following procedure. For each pair among the six models in the table – of which the non-
parametric one with the GPS is the most flexible one and the log-linear one without the GPS is the least flexible one – and the 1600

Fig. 1. Balancing of Covariates – 4 Groups Note: The histograms contain the t-statistics for all 44 linear terms of the covariates. We test for the

equivalence of the covariates between 4 groups which yields 176 t-statistics. In the conditional comparison we split the distribution of Ĝi
q into 16

blocks and conduct the t-tests for subsamples belonging to the same block. A weighted average over these blocks is computed for each treatment
group and each covariate.

14 We suppress fixed country-effects-based results here for two reasons. First, the adjusted R2 of the fixed-effects estimates of the dose-response
function are below the ones of the model without fixed effects. Second, the polynomial specifications of the first-stage models exhibit adjusted-R2

figures which are only marginally lower than the ones of the fixed-effects comparison models.
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cells in skilled-unskilled-immigration space on which the dose-response function is evaluated, we determine whether the 90%
confidence intervals of the two models are overlapping or not. Then, we compute the percentage of cells among the 1600 for which
the confidence intervals of two models are non-overlapping. This results in a symmetric 6 × 6 matrix. We provide this matrix in
Table 6. The following conclusions can be drawn from this analysis. First, which is not obvious from the table, all non-log-linear
models point to a polarized relationship between skill-specific (log) immigration and (log) imports. Second, among the models which
include the GPS, the linear model is much more different from the quadratic one than the nonparametric is. Second, the difference
between any functional form (linear, quadratic, nonparametric) with versus without the GPS is quite strong. This means that ac-
counting for further nonlinearities by conditioning on the GPS leads to model predictions which are statistically significant in more
than 20% of the cells of the dose-response function. We consider these deviations as to be large, and they underline the benefit of
flexibility.

4.4. Immigration effects on the structure of imports

A question of interest to the matter is whether the composition of immigrants has consequences for the composition of bilateral
imports. Since an investigation at the very disaggregated product level is not feasible for reasons of presentation, we resort to an
analysis at the level of aggregates of product classes. A widely accepted way of grouping products is the one proposed by Rauch
(1999, the so-called Rauch classification), which distinguishes between differentiated products, homogeneous products, and an in-
termediate category. Hence, each single observation on aggregate bilateral import flows may be split into the corresponding three
sub-aggregates. Rauch (1999) offers two classification schemes, one dubbed liberal and one conservative. Since the results turn out
virtually identical for the two schemes, let us focus on the liberal classification, here. Specifically, we consider the ratio between
differentiated and homogeneous bilateral imports M M/i

D
i
H as an alternative outcome to total import volume. In this regard, the

parametric and the nonparametric estimations yield very similar results. We provide an illustration of the corresponding findings in
the online appendix and resort to a verbal discussion of the main insights here for the sake of brevity.

The results suggest that the ratio between differentiated and homogeneous goods imports, M M/ ,i
D

i
H is unambiguously increasing

in the stock of skilled immigrants, but for unskilled immigrants the opposite is true. Hence, the two types of immigrants seem to
stimulate different types of bilateral imports in terms of Rauch’s categories. While the aggregate level of imports ceteris paribus rises
with a high concentration of either immigrant type, a high level of bilateral imports in differentiated goods seems to be facilitated by
a high concentration of skilled immigrants. This evidence is consistent with the results in Rauch (1999), Rauch and Trindade (2002),
Briant et al. (2009), Tai (2009), Felbermayr et al. (2010), Peri and Requena-Silvente (2010), Felbermayr and Toubal (2012), and
Genc et al. (2012), who found that the share of high skilled migrants is strongly associated with imports of differentiated goods and
goods traded on organized markets, but less so with goods associated with reference prices.15

Table 5
Second-stage estimation of the unit dose-response function.

OLS Fixed effects
Coef. Std. err. Coef. Std. err.
(1) (2) (3) (4)

Ui 0.685** (0.229) 0.878*** (0.209)
Si −0.038 (0.319) −0.375 (0.292)
Ui

2 0.158*** (0.036) 0.131*** (0.038)

Si
2 0.179*** (0.053) 0.216*** (0.051)

×U Ĝi i
−0.115 (0.683) 0.863 (0.691)

×S Ĝi i
2.777*** (0.806) 1.752* (0.815)

Ui × Si −0.350*** (0.083) −0.355*** (0.083)

Ĝi
−4.416 (4.498) −5.600 (4.254)

Ĝi
2 −35.426** (12.223) −32.387** (11.393)

Constant 0.171 (0.679) 1.000 (0.678)
Observations 2525 2525
adj. R2 0.308 0.253

F-statistic Ĝi terms 14.02 13.61

F-statistic Ui terms 11.66 9.05
F-statistic Si terms 33.96 26.50

Notes: ⁎⁎⁎, ⁎⁎, * denote significance levels at 1, 5, and 10%, respectively. Standard errors in parentheses. Specifications correspond to the common
support sample with four groups. Ui and Si refer to the logarithm of the stock of unskilled and skilled immigrants, respectively, who reside in the
importer country and originate from the exporter country. Ĝi refers to the generalized propensity score calculated according to equation (A.2) using
the coefficients from the first-stage regressions in Table 3. We estimate the standard errors of the average dose-response function by bootstrapping
with 200 draws that take into account that the second-stage estimates involve imprecision from first-stage estimates.

15 Note that the literature has focused on immigration and trade, but network effects of cross-border flows of workers and customers could also
emerge due to business trips, tourism flows, etc. We follow the customary approach here of focusing on immigration, but duly note that other
sources of network effects may be relevant as well.
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However, we should acknowledge that there is at least one alternative rationale for the observed impact of skill-specific im-
migration for differentiated versus homogeneous imports: countries with a high demand for differentiated products will likely also
produce such products and, therefore, will use skilled labor intensively in production. However, this mechanism cannot explain the
polarization result of skilled versus unskilled immigration and its impact on total imports.16

4.5. Effects of migration to OECD versus non-OECD resident countries on imports

Our benchmark estimates focus on migration from OECD and non-OECD countries of origin to OECD destination countries. Recent
research by Artuc et al. (2015) made bilateral information on migration among non-OECD countries as well as migration from OECD
to non-OECD countries available. The latter permits contrasting the results above with ones where the importing/residence countries
are non-OECD rather than OECD economies. In doing so, we again follow the approach outlined in Section 2 in estimating the average
dose-response and treatment-effect functions. For the sake of brevity, we provide the corresponding figure for the non-OECD data
sample in the online appendix and summarize the insights only verbally, here.

It turns out that the predicted import response to combinations of skilled and unskilled immigrants for non-OECD residence

Fig. 2. Parametric Avg. Dose-Response – Import Volume Note: Solid lines mark point estimates, dashed lines the corresponding confidence bounds
(at the 95 percent level). We confidence bounds from a block bootstrapping routine with 200 replications. This routine includes the common-
support restriction, the first-stage estimation of the GPS as well the second-stage estimation.

16 Empirical work indeed suggests that the production of homogeneous, low-profit-margin goods uses unskilled workers more intensively (see
Albertini et al., 2016), unskilled workers earn on average lower wages than skilled ones (Acemoglu and Autor, 2011), and low-wage earners
consume homogeneous goods more intensively than differentiated ones (see Egger and Nigai, 2019).
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countries is very similar to the benchmark sample based on OECD residence countries. Hence, the polarized effect of immigration by
skill-type on imports appears to be generic and independent of the sample of OECD versus non-OECD importing/residence-country
blocks.

4.6. Effects of immigration as well as of emigration on imports

A further extension concerns the role of bilateral emigration (which is migration in the reverse direction of bilateral immigration).
Suppose that emigrants from one country to another one engage in business activity with their country of origin. This may give rise to
an additional import response which could bias the insights gained in the benchmark analysis which focused on immigration. In order
to address this point, we specify total emigration as third endogenous treatment beyond Si and Ui as a function of the same de-
terminants as in Table 3, estimate the GPS, Gi, based on a trivariate normal, using the residuals of the three first-stage models, impose
the common-support condition as before, and estimate the average dose-response function from a second stage model which is based
on three treatments: Si, Ui, and log bilateral emigration (apart from the GPS). Note that this average dose-response function adjusts for
potential differences of emigration across country pairs, while the one in the outset did not. However, since we are not primarily
interested in the (in comparison to immigration relatively more indirect) effect of emigration on imports per se, integrate its effect out
(i.e., we average over the level of emigration) and display the results for the average dose-response function in S Ui i-space as
before. Clearly, while such an analysis is not informative about the impact of emigration as such, the average dose-response function
for skill-specific immigration may not be biased due to an omission of emigration. We provide the corresponding illustration of the

Fig. 3. Nonparametric Avg. Dose-Response – Import Volume Note: Blue corresponds to significant and positive, light blue to insignificant and
positive, and yellow to insignificant and negative. The surface is predicted from a multivariate local linear regression. An optimal bandwidth is
obtained by cross-validation. Standard errors stem from a block bootstrapping routine with 200 replications. This routine includes the common-
support restriction, the first-stage estimation of the GPS as well the second-stage estimation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 6
Model comparison – percentage of non-overlapping 90%-confidence bounds across cells of the dose-response functions.

Quadratic Linear Nonparametric Quadratic Linear Nonparametric
with GPS with GPS with GPS without GPS without GPS without GPS

Quadratic with GPS 0 - - - - -
Linear with GPS 48 0 - - - -
Nonparametric with GPS 29 8 0 - - -
Quadratic without GPS 21 69 36 0 - -
Linear without GPS 67 51 37 68 0 -
Nonparametric without GPS 54 30 23 29 22 0

Notes: We report the percentage of non-overlapping confidence bounds for the predicitions of the dose-response functions across six different types
of models. We use 90-percent confidence bounds.
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dose-response function in the online appendix but suppress it here for the sake of brevity.
Two observations from this analysis stand out. First, the shape of the average dose-response function and, accordingly, the

polarization result remains unaffected by the consideration of bilateral emigration. Second, computing the difference of the predicted
import responses with and without controlling for emigration reveals that the effect increases slightly on average. This suggests that
the positive correlation between bilateral immigration and emigration leads to some mis-attribution of import responses to im-
migration, where emigration is the cause. However, the magnitude of the potential mis-attribution does not vary with skilled relative
to unskilled immigration so that the qualitative pattern of effects is the same as in the outset.

5. An interpretation of the polarization result of immigration on imports and some further evidence on the role of
institutions

Distinct aspects of immigration networks discussed in the literature are two: brokerage and closure. Brokerage involves building
connections across groups to increase exposure to diverse opinion and practice. It is associated with growth and innovation.
Immigrants are naturally brokers between their source country and the host country in which they settle (see Gould, 1994, for an
early argument along those lines; the results in Head and Ries (1998); Wagner et al. (2002); Bryant et al. (2004); and
Egger et al. (2012a); are consistent with this view). Closure involves strengthening connections within a group to focus the group on a
limited set of opinions and practice. It is associated with trust and alignment, ultimately enhancing efficiency, and it plays a par-
ticularly central role in dealing with institutional failures and asymmetric information problems. Our results suggest that migrations
characterized by a strong concentration of a given skill group will form more effective networks, generate “better” bridges, and thus
produce a stronger link between migration and trade. When considering the pre-existing social bonds between any group of migrants,
the claim that similarity of education creates closer bonds gains considerable plausibility. The finding that the effect of immigration
on imports is stronger for immigration flows made up of people with relatively homogeneous skills is consistent with the hypothesis
that the degree of closure within an immigrant community drives the network effects of trade. The role of closure, i.e., reputation-
building and punishment via the exclusion from group benefits should be particularly pronounced for countries characterized by poor
enforcement of contract and property rights. We would expect that homogeneous migrant groups exert a stronger effect on imports
from countries with low quality of institutions compared to countries where the enforcement of contracts is guaranteed by an efficient
legal system.

We assess this hypothesis by analyzing whether the polarization result varies with the quality of institutions as measured by
indicators on the control of corruption, government effectiveness, political stability, rule of law, regulatory quality, and absence of
violence which are contained in the World Bank’s World Development Indicators database. Specifically, we proceed as follows to shed
light on the role of institutions in conjunction with the average dose-response function in S Ui i-space. We raise each one of the just-
mentioned six measures of institutional quality simultaneously. Using the estimated first-stage-regression parameters, we change the
residuals accordingly and give the change in institutional quality the interpretation of an exogenous, random shock. This results in an
alternative level of the GPS. The latter and also all potential skilled and unskilled immigration levels together with these random
shocks from the first stage are used to compute predictions based on the original second-stage regression parameters but using
counterfactual values associated with raised institutional quality. Based on these, we compute the predictions for an alternative
counterfactual average dose-response function, associated with the improved institutional quality. We display the difference between
this parametric counterfactual average dose-response function and the original parametric one in Fig. 4. As this skill-specific-im-
migration-level difference is relatively nonlinear, we decided to resort to a three-dimensional representation of the dose-response
function.

In the figure, blue color indicates potential skilled-and-unskilled (log-)immigration-level combinations where the predicted im-
port response in logs is increased whereas red color indicates combinations where the predicted import response is reduced due to the
higher level of institutional quality. The figure suggests that homogeneous groups of immigrants stimulate imports particularly in
cases where institutions are weak in their origin countries. This is consistent with the aforementioned closure-effect hypothesis of
immigrant networks.

6. Conclusions

This paper assesses the role of skilled versus unskilled immigration for bilateral imports in a large data-set of country pairs.
Flexible parametric and nonparametric reduced-form models are postulated, where the stocks of skilled and unskilled migrants at the
country-pair level are determined as endogenous continuous treatments. By invoking conditional mean independence and weak
unconfoundedness, the impact of different levels of skilled and unskilled immigration on the volume and structure of bilateral imports
is assessed in a quasi-experimental design. This is accomplished through a generalized estimation procedure for an assessment of
causal effects of univariate continuous treatments on outcome.

Three sets of results from this analysis stand out. First, we find evidence of a polarized impact of skill-specific immigration on
imports: highly concentrated skilled or unskilled migrants induce higher import volumes than a balanced, more homogeneous
composition of the immigrant base. Second, while a polarization of skilled migrants seems to foster primarily differentiated goods
trade, a polarization of unskilled migrants mainly stimulates homogeneous goods trade. Third, homogeneous immigrant communities
tend to stimulate imports particularly strongly, where the institutions in the source (and exporting) country are weak. Either piece of
evidence is consistent with a segregation of skill-specific immigrant networks and corresponding trade patterns.

This evidence has a straightforward policy conclusion. In particular, it suggests not only that trade liberalization and skill-group-
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specific migration policy induce complementary effects on economic outcome, but it also indicates that such complementarity is
stronger with regard to source and exporting countries which have weak institutions.
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Appendix A. Sample composition

29 OECD residence countries: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, Greece, Hungary,
Ireland, Italy, Japan, Korea (Republic of), Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain,
Sweden, Turkey, United States, Spain, Switzerland, United Kingdom.

65 non-OECD residence countries: Albania, Algeria, Argentina, Azerbaijan, Bangladesh, Belarus, Bolivia, Brazil, Bulgaria,
Burkina, Cameroon, Chile, China, Colombia, Costa, Cote, Croatia, Cyprus, Ecuador, El Salvador, Estonia, Georgia, Ghana, Guatemala,
Honduras, Indonesia, Israel, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyz, Latvia, Lithuania, Malaysia, Mali, Mauritius, Moldova,
Mongolia, Morocco, Mozambique, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Panama, Paraguay, Peru, Philippines, Romania,
Rwanda, Saudi Arabia, Singapore, Slovenia, South Africa, Sri Lanka, Sudan, Thailand, Trinidad, Tunisia, Ukraine, Uruguay,
Uzbekistan, Vietnam.

98 OECD and non-OECD countries of origin: Algeria, Argentina, Armenia, Australia, Austria, Azerbaijan, Bangladesh, Belgium,
Bolivia, Bosnia and Herzegovina, Brazil, Bulgaria, Burkina Faso, Cambodia, Cameroon, Canada, Chile, China, Colombia, Costa Rica,
Cote d’Ivoire, Croatia, Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Finland, France, Gabon,
Georgia, Ghana, Greece, Guatemala, Haiti, Honduras, Hungary, India, Indonesia, Ireland, Israel, Italy, Jamaica, Japan, Jordan,
Kazakhstan, Kenya, Korea (Republic of), Latvia, Lithuania, Macedonia (Former Yugoslavian Republic), Madagascar, Malaysia, Mali,
Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Nepal, Netherlands, New Zealand, Nicaragua, Niger,
Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Romania, Russian Federation, Singapore, Slovak Republic,
Slovenia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Tanzania, Thailand, Trinidad and Tobago, Tunisia, Turkey, Ukraine,
United Kingdom, United States, Uruguay, Venezuela, Vietnam, Yemen (Republic of), Zambia.

Fig. 4. The Role of Institutions Note: This figure displays the difference between a counterfactual average dose-response E′[M(U, S)] function where
we have raised the quality of institutions by one standard deviation and the actual average dose-response function E[M(U, S)]. See Section 5 for
details. Both average dose-response functions are computed on the basis of the parametric version of the second-stage. We use the estimates on the
control of corruption, government effectiveness, political stability and absence of violence/terrorism, rule of law, regulatory quality, and voice and
accountability from the World Bank as proxies for institutional quality. We raise each of these dimensions at the same time. Hence, level of the
difference E M U S E M U S[ ( , )] [ ( , )] reflects the gain in bilateral trade volume due to a one-standard deviation increase of institutional quality at
different combinations of skilled and unskilled migration.

P.H. Egger, et al. Journal of Comparative Economics 48 (2020) 448–464

463



Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jce.2019.12.008

References

Acemoglu, D., Autor, D., 2011. Skills, tasks and technologies: Implications for employment and earnings. In: Card, D., Ashenfelter, O. (Eds.), Handbook of Labor
Economics. 4b. pp. 1043–1171. Chapter 12.

Albertini, J., Hairault, J.-O., Langot, F., Sopraseuth, T., 2016. How do Product and Labor Market Regulations Affect Aggregate Employment, Inequalities and Job
Polarization? A General Equilibrium Approach. Unpublished manuscript. TEPP - Institute of rLabor Studies and Public Policies.

Alesina, A., Harnoss, J., Rapoport, H., 2016. Birthplace diversity and economic prosperity. J. Econom. Growth 21, 101–138.
Anderson, J.E., 2011. The gravity model. Annu. Rev. Econom. 3, 133–160.
Anderson, J.E., van Wincoop, E., 2003. Gravity with gravitas: a solution to the border puzzle. Am. Econom. Rev. 93, 170–192.
Artuc, E., Docquier, F., Ozden, C., Parsons, C., 2015. A global asessment of human capital mobility: the role of non-OECD destinations. World Dev. 65 (C), 6–26.
Aubry, A., Resheff, A., Rapoport, H., 2018. Migration, FDI and the margins of trade. Unpublished manuscript. Paris School of Economics.
Bombardini, M., Gallipoli, G., Pupato, G., 2012. Skill dispersion and trade flows. Am. Econom. Rev. 102, 2327–2348.
Briant, A., Combes, P.-P., Lafourcade, M., 2009. Product complexity, quality of institutions and the pro-trade effect of immigrants. Paris School of Economics Working

Paper #2009 - 06.
Bryant, J., Genç, M., Law, D., 2004. Trade and migration to New Zealand. New Zealand Treasury, Working Paper Series #04/18.
Dekle, R., Eaton, J., Kortum, S., 2007. Unbalanced trade. Am. Econom. Rev. 97, 351–355.
Docquier, F., Lowell, B.L., Marfouk, A., 2009. A gendered assessment of highly skilled emigration. Popul. Dev. Rev. 35, 297–322.
Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall/CRC Monographs on Statistics & Applied Probability; London.
Egger, P.H., Ehrlich, M., 2013. Generalized propensity scores for multiple continuous treatment variables. Econ. Lett. 119, 32–34.
Egger, P.H., Ehrlich, M., Nelson, D.R., 2012a. Migration and trade. World Econ. 35, 216–241.
Egger, P. H., Ehrlich, M. v., Nelson, D. R., 2012b. The trade effects of skilled versus unskilled migration. CEPR Discussion Paper 9053.
Egger, P.H., Nigai, S., 2019. Sources of heterogeneous gains from trade: income differences and non-homothetic preferences. Rev. Int. Econom. 26, 1021–1039.
Egger, P.H., Nigai, S., Strecker, N., 2019. The taxin deed of globalization. Am. Econ. Rev. 109, 353–390.
Felbermayr, G., Jung, B., Toubal, F., 2010. Ethnic Networks, Information, and International Trade: Revisiting the Evidence. Annales d’Economie et de Statistique. pp.

41–70.
Felbermayr, G.J., Grossman, V., Kohler, W., 2015. Migration, international trade, and capital formation: Cause or effect. In: Chiswick, B.R. (Ed.), Handbook of the

Economics of International Migration. 1. pp. 913–1025. North-Holland, 2015.
Felbermayr, G.J., Jung, B., 2009. The pro-trade effect of the brain drain: sorting out confounding factors. Econ. Lett. 104, 72–75.
Felbermayr, G.J., Toubal, F., 2012. Revisiting the trade-migration nexus: evidence from new OECD data. World Dev. 40, 928–937.
Fisman, R., Wei, S.J., 2004. Tax rates and tax evasion: evidence from missing imports in china. J. Polit. Econ. 112, 471–496.
Flores, C.A., Gonzalez, A., Neumann, T.C., 2012. Estimating the effects of length of exposure to instruction in a training program: the case of job corps. Rev. Econom.

Stat. 94, 153–171.
Gaston, N., Nelson, D.R., 2011. International Migration. In: Bernhofen, D.M., Falvey, R., Greenaway, D., Kreickemeier, U. (Eds.), Handbook of International Trade.

Palgrave Macmillan, Basingstoke, pp. 660–697.
Genc, M., Gheasi, M., Nijkamp, P., Poot, J., 2012. The Impact of Immigration on International Trade: A Meta-analysis. In: Nijkamp, P., Poot, J., Sahin, M. (Eds.),

Migration impact assessment. Edward Elgar, Cheltenham, pp. 301–337.
Gould, D.M., 1994. Immigrant links to the home country: empirical implications for united states bilateral trade flows. Rev. Econom. Stat. 76, 302–316.
Green, W.H., 2011. Econometric Analysis. Prentice Hall, Upper Saddle River; NJ.
Hatzigeorgiou, A., 2010. Migration as trade facilitation: Assessing the links between international trade and migration. TheB.E. Journal of Economic Analysis & Policy

10. Article 24.
Head, K., Ries, J., 1998. Immigration and trade creation: econometric evidence from canada. Can. J. Econom. 31, 47–62.
Helpman, E., 1987. Imperfect competition and international trade: evidence from fourteen industrial countries. J. Jpn. Int. Econ. 1, 62–81.
Hirano, K., Imbens, G.W., 2005. The Propensity Score with Continuous Treatments. Applied Bayesian modeling and causal inference from incomplete-data per-

spectives. John Wiley & Sons, Ltd, pp. 73–84.
Imai, K., van Dyk, D.A., 2004. Causal inference with general treatment regimes: generalizing the propensity score. J. Am. Stat. Assoc. 99, 854–866.
Javorcik, B.S., Narciso, G., 2008. Differentiated products and evasion of import tariffs. J. Int. Econ. 76, 208–222.
Kluve, J., Schneider, H., Uhlendorff, A., Zhao, Z., 2012. Evaluating continuous training programmes by using the generalized propensity score. J. R. Stat. Soc. 175,

587–617.
Lechner, M., 2001. Identification and Estimation of Causal Effects of Multiple Treatments under the Conditional Independence Assumption. In: Lechner, M., Pfeiffer, F.

(Eds.), Econometric Evaluation of Labour Market Policies. 13. Physica-Verlag HD, pp. 43–58.
Lee, M., 2005. Micro-econometrics for Policy, Program, and Treatment Effects. Oxford University Press, Oxford; New York.
Marshall, M.G., Jaggers, K., Gurr, T.R., 2011. Polity IV Project: Dataset UsersManual. Center for Systemic Peace: Polity IV Project.
Mayda, A.M., 2010. International migration: a panel data analysis of the determinants of bilateral flows. J. Popul. Econ. 23, 1249–1274.
Mrazova, M., Neary, J.P., Parenti, M., 2017. Sales and Markup Dispersion: Theory and Empirics. CEPR Discussion Paper No. 12044.
Orefice, G., Rapoport, H., Santoni, G., 2019. International Competitiveness and Migration: Diversity, Networks and Knowledge Diffusion. Unpublished manuscript.

Paris School of Economics.
Ortega, F., Peri, G., 2014. Openness and income: the roles of trade and migration. J. Int. Econ. 92, 231–251.
Parsons, C.R., Winters, L.A., 2014. International Migration, Trade and Aid: A Survey. In: Lucas, R.E.B. (Ed.), International Handbook on Migration and Economic

Development, Edward Elgar, pp. 65–112.
Peri, G., Requena-Silvente, F., 2010. The trade creation effect of immigrants: evidence from the remarkable case of spain. Can. J. Econom. 43, 1433–1459.
Rauch, J.E., 1999. Networks versus markets in international trade. J. Int. Econ. 48, 7–35.
Rauch, J.E., Trindade, V., 2002. Ethnic chinese networks in international trade. Rev. Econom. Stat. 84, 116–130.
Santos Silva, J., Tenreyro, S., 2006. The log of gravity. Rev. Econom. Stat. 88, 641–658.
Sequeira, S., 2016. Corruption, trade costs, and gains from tariff liberalization: evidence from southern africa. Am. Econom. Rev. 106, 3029–3063.
Tai, S.H.T., 2009. Market structure and the link between migration and trade. Rev. World Econom. 145, 225–249.
Wagner, D., Head, K., Ries, J., 2002. Immigration and the trade of provinces. Scott. J. Polit. Econ. 49, 507–525.
Wooldridge, J.M., 2010. Econometric analysis of cross section and panel data. MIT Press, Cambridge, Mass.

P.H. Egger, et al. Journal of Comparative Economics 48 (2020) 448–464

464

https://doi.org/10.1016/j.jce.2019.12.008
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0001
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0001
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0002
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0002
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0003
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0004
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0005
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0006
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0007
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0008
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0009
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0010
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0011
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0012
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0013
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0014
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0015
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0015
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0016
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0016
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0017
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0018
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0019
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0020
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0020
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0021
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0021
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0022
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0022
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0023
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0024
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0025
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0025
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0026
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0027
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0028
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0028
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0029
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0031
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0032
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0032
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0033
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0033
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0034
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0035
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0036
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0037
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0038
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0038
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0039
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0040
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0040
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0041
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0042
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0043
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0044
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0045
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0046
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0047
http://refhub.elsevier.com/S0147-5967(18)30418-9/sbref0048


Center for Regional Economic Development (CRED) 

University of Bern 

Schanzeneckstrasse 1 

P.O.Box 

CH-3001 Bern 

Telephone: +41 31 631 37 11 

E-Mail: info@cred.unibe.ch 

Website: http://www.cred.unibe.ch  
 

The Center for Regional Economic Development (CRED) is an interdisciplinary hub for the scientific 

analysis of questions of regional economic development. The Center encompasses an association of 

scientists dedicated to examining regional development from an economic, geographic and business 

perspective. 

 

Contact of the authors: 
 

Peter H. Egger 

ETH Zurich 

Leonhardstrase 21 

CH-8092 Zürich 

Telephone: +41 44 632 41 08 

Email: egger@kof.ethz.ch 

 

Maximilian von Ehrlich 

University of Bern 

Schanzeneckstrasse 1 

P.O.Box 

CH-3001 Bern 

Telephone: +41 31 631 80 75 

Email: maximilian.vonehrlich@vwi.unibe.ch 
 
 
 
 
 

mailto:info@cred.unibe.ch
http://www.cred.unibe.ch/
mailto:maximilian.vonehrlich@vwi.unibe.ch


Douglas R. Nelson 

Tulane University 

108 Tilton Hall 

New Orleans, Louisiana 70118-5698 USA 

Telephone: +1 (504) 865-5317 

Email: dnelson@tulane.edu 

 

This paper can be downloaded at:  

https://www.cred.unibe.ch/forschung/publikationen/cred_research_papers/index_ger.html 

https://www.cred.unibe.ch/forschung/publikationen/cred_research_papers/index_ger.html

	V1_template_CRED-Research Paper_mit Keywords
	CRED Research Paper Nr. 31
	The trade effects of skilled versus unskilled migration
	Introduction
	Econometric approach
	General outline
	Model outline
	Implementation and parametrization

	Data and descriptive statistics
	Dependent variables
	Independent variables

	Results
	Multivariate GPS estimation, common support, and the balancing property
	Parametric estimates of the multivariate dose-response and treatment-effect functions
	Nonparametric estimates of the multivariate dose-response and treatment-effect functions and general notes on the functional form
	Immigration effects on the structure of imports
	Effects of migration to OECD versus non-OECD resident countries on imports
	Effects of immigration as well as of emigration on imports

	An interpretation of the polarization result of immigration on imports and some further evidence on the role of institutions
	Conclusions
	Acknowledgments
	Sample composition
	Supplementary material
	References





