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Abstract

The ability to understand and predict the flows of people in cities is crucial for the
planning of transportation systems and other urban infrastructures. Deep-learning
approaches are powerful since they can capture non-linear relations between
geographic features and the resulting mobility flow from a given origin location to a
destination location. However, existing methods cannot quantify the uncertainty of
the predictions, limiting their interpretability and thus their use for practical
applications in urban infrastructure planning. To that end, we propose a Bayesian
deep-learning approach that formulates deep neural networks as Gaussian processes
and integrates automatic variable selection. Our method provides uncertainty
estimates for the predicted origin-destination flows while also allowing to identify
the most critical geographic features that drive the mobility patterns. The developed
machine learning approach is applied to large-scale taxi trip data from New York
City.

Key words: mobility, Bayesian deep learning, smart cities, transportation system planning.

JEL classification: C45, R41

CRED Tel. +41 31 684 37 11
Universitat Bern info@cred.unibe.ch
Schanzeneckstrasse 1 www.cred.unibe.ch

Postfach
CH-3001 Bern



2 1 INTRODUCTION

1 Introduction

Transportation systems and other urban infrastructures need to be continu-
ously adapted to cope with an increasing number of grand challenges such as
population growth, climate change, disruptive technological innovations and,
more recently, the global pandemic [1, 2]. At the same time, infrastructure
developments typically affect many people, cost lots of resources and are dif-
ficult to reverse [3]. As a consequence, planners and engineers, responsible for
the sustainable design of these systems, need to base their decisions on a pro-
found, science-based understanding of how people make use of urban space and
how their daily mobility patterns are affected by local characteristics [4-6].

To that end, mathematical models help to quantify the relation between
urban features and the mobility flows between different origin and destination
locations [7]. Of particular importance are gravity models [8-10] that predict
the number of people traveling from an origin ¢ to a destination j as Tj; =
cmym;j f(ri;), where c is a constant, m; and m; are key local attributes, and
f(-) is a decreasing function of the distance r;; between the two locations. A
common choice is m; = P and m; = Pf , where P; and P; are the population
sizes of the locations ¢ and j, and o and (8 are parameters that are calibrated
with data. Gravity models can be extended to include additional variables
such as travel time [11]. Typically, the function f(-) takes the form of an
exponential or power-law f(r;;) = ri_jv where ~ is an additional parameter
that needs to be calibrated. While the functional form of the gravity models is
simple and explainable, it may also lead to high prediction errors since it is not
able to reflect many interacting factors such as varying trip purposes over the
course of a day or socio-economic characteristics of the travelers [12]. Being a
more fundamental limitation, gravity models so far do not provide uncertainty
estimates for their predictions. In other terms, decision makers do not know
when the model is uncertain about its predictions and whether it might even
be guessing at random, which is highly undesirable for infrastructure planning
applications. The same limitations also apply to intervening opportunities
models which, besides gravity models, constitute the second important class
of traditional mobility flow models [13, 14].

Several machine learning approaches have been developed to address some
of these limitations. Examples are decision tree models [15, 16] and feed-
forward neural networks [15-19] that are able to outperform the traditional
mobility flow models in terms of prediction performance. More recently, var-
ious deep learning techniques have been applied [20]. Particularly relevant is
Deep Gravity [21], which is a deep neural network model for predicting mobil-
ity flows based on an extensive set of geographic features such as land use,
road network, food and health facilities. Explainability is added through using
SHAP (SHapley Additive exPlanation), allowing to understand how strongly
the input features contribute to the mobility predictions. The strength of such
approaches lies in pattern recognition, where the non-linearity of the mod-
els allows to improve the prediction performance through detecting complex



regularities in the data. However, similar to traditional models, they do not
provide any uncertainty estimates associated with individual predictions.

To address this gap, we introduce a deep learning approach that i) is
able to consider many input variables with complex relational structure, ii)
is interpretable with respect to the relevance of the individual input variables
and iii) is interpretable with respect to the uncertainty of its predictions.
The approach uses exact Bayesian inference on deep neural networks that are
formulated as Gaussian processes.

2 Methodology

2.1 Bayesian deep learning using Gaussian process priors

Deep neural networks have a high prediction performance in pattern recog-
nition problems [22] since they are able to capture complex, non-linear
dependencies. However, after training a deep neural network, it is difficult to
obtain uncertainty estimates of its predictions [23]. This is because deep learn-
ing models are typically deterministic functions where parameter values and
predictions are point estimates rather than probability distributions.
Bayesian deep learning is the principled approach of dealing with these
uncertainties by defining deep learning models in a probabilistic way [24, 25].
The resulting models are typically more robust against overfitting, provide
uncertainty estimates for parameters and predictions and can handle small
data sizes, while being as straightforward to train as traditional deep learning
models [26]. Such models are therefore of great value for critical applications
where uncertainty information is required. Bayesian deep learning requires
first, the definition of a probabilistic model and second, the inference of the
model parameters from the observed data. In line with the Bayesian paradigm,
we have to define a prior distribution as well as a likelihood function. The
prior distribution over the network parameters 6 gives a prior distribution
over parametric functions f(x; 6), where f(-) is the network function and =z
is the network input. The weights and biases in each layer are often given
standard Gaussian prior distributions. The likelihood function is treated as in
Generalized Linear Models where the neural network is used instead of a lin-
ear model. The main difficulty in Bayesian deep learning is the inference part
due to a large amount of parameters which leads to very high-dimensional,
intractable posterior probability distributions [26]. This problem has been
tackled through stochastic inference approaches [27] such as Markov chain
Monte Carlo (MCMC) methods. These methods sample from the true poste-
rior distribution and are characterized by the theoretical convergence to the
true model. But in the context of neural network models MCMC methods are
able to explore the posterior only in a small neighborhood that is sensitive
to the initial conditions. Sampling then may produce useful predictive models
but it still fails to sample correctly from the whole posterior. Alternatively,
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deterministic approaches [28, 29] approximate the intractable posterior distri-
bution using some tractable form but do not quantify how close the posterior
approximation is to the true model [30].

Recently, the exact equivalence between infinitely wide deep neural net-
works (which are deterministic functions) and Gaussian processes (which
are probability distributions over functions) has been derived [31, 32]. This
approach promises to overcome many of the above challenges by providing
exact and efficient Bayesian inference. This is an alternative to determinis-
tic or stochastic inference with the original neural network model where the
prior distribution of the neural network is reformulated as a Gaussian process
prior. Concretely, given a feed-forward neural network and placing Gaussian
distributions over the weights, then in the limit of infinite network width the
model becomes a Gaussian process with the kernel being dependent on the
network architecture and prior specification. This reformulation then allows
for Bayesian prediction with deep neural networks where the computation only
requires building the kernel and straightforward matrix computations without
the need for stochastic gradient-based training. Indeed, Lee et al. [31] used the
Gaussian processes for Bayesian inference on regression tasks and compared
their performance to stochastic gradient training. They found that the neu-
ral network accuracy approaches that of the Gaussian process with increasing
layer width, that the Gaussian process predictions typically outperform the
neural networks with finite width, and that the Gaussian process uncertainty is
strongly correlated with the prediction error. This probabilistic formulation of
an infinitely wide deep neural network as a Gaussian process has been termed
Neural Network Gaussian Process (NNGP) [31]. A general limitation is the
scalability due to the matrix inverse problem in Gaussian process inference.

Thus, for the neural network model, we consider a feed-forward fully-
connected architecture with L hidden layers and N; hidden units in layers
Il =1,...,L. The input for the model is x € R” and the output is z € R. In
each layer [ and unit 7, 2! is the value after the activation and 2! is the value
after the linear transformation and before the next activation. In the case of
the input, z{* is the value of variable i for a particular input . The non-linear
transformation is denoted by ¢(-). And the weights Wilj within a layer have
the following hierarchical prior

0w2 ~ Gamma(,, Bw),

and the biases b} within a layer have the following hierarchical prior

bl ~ N(0,07)

o, % ~ Gamma(ay, 3p)
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The correspondence between deep neural networks and Gaussian processes
can be seen in the network function [31]

=b; + Z ij J a:é(a;) = ¢ (Zé‘il(x)) '

By induction it can be shown that if N;_; goes to infinity then the input to
layer [ is a Gaussian process and therefore 2!(z) is a Gaussian process with

z ~ GP(u', k')
p=E[z(@)] =0
k' (z,x,) = cov [zl(a:) zl(sc*)} =E [zl(:c)zl(x*)]

7

_Ub'i‘UEl1 ~GP(0,kl~ 1)[( ())¢(l1( ))]
=0 + oo, F (K" (2, 2.), Kz, 2), K (24, 20))

where F is a deterministic function that describes the relationship between k'
and k'~!. k! can then be solved analytically, e.g. if ¢(-) is the Rectified Linear
Unit (ReLU) non-linearity then k' becomes the arccosine kernel [33] and kT
can be computed iteratively.

2.2 Sparse learning for variable selection

To improve the interpretability of the inputs to the model, we additionally
use sparse learning. In the typical sparse learning setting, the model allows for
many covariates that are potentially relevant for prediction. Sparsity then has
the underlying assumption that only a subset of these covariates is relevant but
we don’t know beforehand which one. By selecting only the relevant variables,
sparse learning can help to better understand the process that generated the
data, it can reduce measurement requirements, and it can improve prediction
performance especially if the number of data points is small compared to
the number of covariates. To enable Bayesian sparsity, we need a prior that
collapses all the posterior mass to either relevance or irrelevance. Here, the
regularized horseshoe prior [34] which is an extension of the original horseshoe
prior [35] has been shown to be particularly useful, since the performance of
the model is not very sensitive to the choices in the prior parameters [25].

To our knowledge, no research has been done on integrating automatic
variable selection in the formulation of deep neural networks as Gaussian pro-
cesses. To that end, we integrate the horseshoe prior into the neural network
kernel of the Gaussian process by introducing additional hyperparameters to
the kernel. Specifically, we propose a horseshoe prior on the weight parame-
ters connected to the input variables which induces sparsity in the first layer
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(I =0) of the corresponding neural network [34],

o2
0 212 N2
J

Aj ~C*(0,1),
00_2 ~ Gamma(ag, By), o =10/2, Bo=1ps>/2
T~ CT(0, ag),

where all weights VVO that connect to the same input component x; are drawn

from a scale mixture of normal distributions with variance 72)\3, where 7 is
the global shrinkage parameter that shrinks all parameters to zero while )\j
is the local shrinkage parameter that allows individual parameters to escape
this shrinkage if it is useful for the prediction. The parameters 7 and A; are
themselves unknown. The prior for 7 ensures that the data can inform the
global shrinkage beyond the initial guess o,. The heavy-tailed Cauchy prior of
A; allows individual parameters to go to large values and go above the global
shrinkage 7 if needed. By using 5\? instead of A% directly, the main problem
of the original horseshoe prior can be solved which is that parameters that
escape the shrinkage are almost unregularized and therefore can go to very
large values. After marginalizing, the Gamma distribution on o 2 then results
in a Student-t,, (0, s2) for the parameters far from zero. After training, some
of the hyperparameters associated to an input variable will be much smaller
than others, indicating that the corresponding input variable is not relevant
for the predictions.

Next, we convert the above formulation of the prior distribution for the
first layer of the neural network into the formulation of the Gaussian process
prior for deep neural networks. With W} ~ N(0, 7'25\?) and b; ~ N(0,07) the
base case k" becomes

K (2, 2.) = cov [2)(z

), 2} (x.)] = E [2](2)2] (z.)]
=0} + Z LjLxj

We can now utilize the recursion relating k! and k° to complete the iterative
series of computations to obtain k¥ for the Gaussian process that describes
the network’s final output.

Consider a dataset {(z%,y!),..., (@, y")} with N input-target pairs, for
example in mobility flow modeling, N origin-destination pairs where x are
the input variables such as number of people living and working at origin and
destination and y are the flows between the origins and destinations. The goal
is to construct a distribution over functions z(x) that can be used to make
predictions at a test point x,. The distribution over functions is modeled with
the above described Gaussian process model and for the noise model we assume
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a Gaussian centered at z which allows for exact Bayesian inference with pure
matrix calculation.

The deep neural network kernel and the noise model are fully determined
by the set of parameters 0 = {0y, 0p, T, 00, \, 0, }. Other parameters such as
the depth of the network are not modelled explicitly and we simply test for dif-
ferent configurations. The log of the posterior distribution over the parameter
space is then logp(0 | x,y)  logp(0) + logp(y | 6, x). The prior of the noise
variance is 072 ~ Gamma(a,, 3,) and the calculation of the log marginal
likelihood is given in [36].

The entire computations including the construction of the kernel are dif-
ferentiable which makes it possible to use the Hamiltonian Monte Carlo
algorithm. The output is a set of M samples 8 = {0y,...,0;,} that can be
used to compute expectation values of any function of interest. For Bayesian
prediction we can draw for each 6; samples from the Gaussian process model
Zyij ~ D(2« | 0i,x4) where ¢ = 1,..., M are the MCMC samples of 6 and
Jj =1,...,L are the samples of z, for each 6;. The samples z,;; can then be
used to compute summaries such as mean and standard deviation.

Taken together, we refer to our proposed framework as Horseshoe Neu-
ral Network Gaussian Process (H-NNGP). Its design allows for fully Bayesian
inference of deep neural networks. With the formulation as a Gaussian pro-
cess we can explicitly model the uncertainty in the dataset, as well as in the
prediction function which is important for the critical decision making in the
urban context. Additionally, the introduced hyperparameters in the covariance
function of the Gaussian process allow a principled way of automatic vari-
able selection. Finally, the framework can replicate the linear gravity model
(simply by setting the number of hidden layers to zero), as well as powerful
non-linear models (with increasing number of hidden layers), and there is a
theoretical guarantee that the posterior parameters (and thereby the variable
importance) are correct.

2.3 Assessment of H-NNGP on synthetic data

To assess the H-NNGP model in a controlled setting, we test it on synthetic
data. To that end, we created a synthetic dataset with the ‘Madelon’ tem-
plate that was proposed in the NIPS 2003 variables selection challenge [37]. By
adjusting the parameters of the template it is possible to generate versions of
the dataset that allow to focus on specific variable selection challenges. Made-
lon is a two-class classification dataset with continuous input variables and a
binary target variable. We generate one small problem (‘s-Madelon’), and one
large problem (‘I-Madelon’), see table 1. The 1-Madelon is substantially more
difficult than s-Madelon due to the larger number of variables and a smaller
ratio of samples to informative variables. Together, the datasets cover different
challenges related to the number of redundant, repeated, and non-informative
variables, the number of training samples, and the nonlinearity of the data.
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Table 1 Parameter choices for the synthetic

datasets

Parameter s-Madelon 1-Madelon
Number of classes 2 2
Number of clusters per class 2 16
Number of samples per cluster 50 25
Number of informative variables 2 5
Number of redundant variables 2 5
Number of repeated variables 2 10
Number of noninformative variables 14 80
Factor multiplying hypercube size 2 2
Fraction of random labels 0.01 0.01

2.3.1 Model configurations

In the experiments the classification task is formulated as a regression task [38]
which enables the use of a Gaussian noise model and therefore allows exact
inference for the H-NNGP model. Similar to [31], the class labels are encoded
as one-hot zero mean multidimensional regression targets.

We then draw 100 training samples and 100 test samples for the s-Madelon
experiment, and 400 training samples and 400 test samples for the 1-Madelon
experiment. The training sets are used for the inference part and the test sets
are used to report the performance.

The H-NNGP performance is tested for different choices of (L,ag). The
hyperparameter network depth, L, was tested for {0,1,3}, where L = 0 has
zero hidden layer and is equivalent to a Gaussian Process with a linear kernel.
The hyperparameter 03 for the prior of the global shrinkage parameter 7 was
tested on log scale for {0.01,1,100}. The hyperparameters for the remaining
priors are fixed: (i) a, = 1 and B, = 1072 which gives a weakly informative
prior for 0,2, (ii) ap = 1 and 8, = 1072 which gives a weakly informative
prior for o, 2 (iii) v = 1 and s9 = 1 which results in a weakly informative
Student-t,, (0, s3) prior for the parameters far from zero, and (iv) a,, = 1076
and 3, = 1075 which gives an uninformative prior for the noise o, 2.

The model parameters are then estimated with Bayesian inference using
the Hamiltonian Monte Carlo approach [39]. In each experiment the Markov
chain is started at the maximum a posteriori which is found with the Adam

optimizer [40].

2.3.2 Results

The first part of results concerns the prediction performance in terms of the
accuracy of the binary classification task, see table 2. For s-Madelon the linear
models with zero hidden layers have an accuracy close to 50 percent which,
for a binary classification task, corresponds to guessing at random and is
not surprising given the XOR classification task. The non-linear models reach
almost perfect accuracy considering the noise in the data. The picture is sim-
ilar for 1-Madelon. The linear models perform slightly better than guessing
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Table 2 Test accuracy for various model
configurations for the Madelon datasets. The
Gaussian process models are specified by L
and ag (e.g., H-NNGP-0-1 corresponds to
L:Oandagzl).

Model s-Madelon 1-Madelon
H-NNGP-0-1 0.47 0.58
H-NNGP-0-100 0.47 0.58
H-NNGP-1-0.01 0.96 0.87
H-NNGP-1-1 0.98 0.87
H-NNGP-1-100 0.98 0.87
H-NNGP-3-0.01 0.94 0.87
H-NNGP-3-1 0.95 0.87
H-NNGP-3-100 0.94 0.87

at random since it’s not a perfect XOR task anymore. The non-linear models
perform slightly worse than for the s-Madelon due to the higher complexity
of the classification task. Noteworthy, the classification accuracy is insensitive
to the number of hidden layers as long as the model is non-linear (L > 1)
and the classification accuracy is also insensitive to different global shrinkage
parameters. This is likely due to the simplicity of the synthetic datasets where
non-linear patterns can be detected relatively easily. Interestingly, the hyper-
parameter O'g that shapes the prior of the global shrinkage parameter 7 has no
significant effect on the prediction accuracy. This suggests that the parameter
7 is mainly informed by the data and less effected by the prior.

The second part of results concerns the uncertainty estimation perfor-
mance. An advantage of the Bayesian formulation is that it allows to assign a
variance to each test point prediction which encodes how certain the model is
about a prediction. Fig. 1 shows the correlation between uncertainty estimates
and prediction error. Test points with a higher uncertainty estimate tend to
have higher prediction error. This shows that the model seems to ‘know when
it doesn’t know’.

The third part of results concerns the variable selection performance. Vari-
ables are selected based on the magnitude of the local shrinkage parameters
A, where a large \; indicates that the connected variable ¢ is relevant for
explaining the observed data. The magnitude does not represent the relative
relevance of individual variables but can only be used to distinguish between
relevant and irrelevant. Figure 2 shows the posterior values for all local shrink-
age parameters. The model correctly selects all variables that contain helpful
information, either by being informative (directly or by repeating an infor-
mative variable that was not selected) or by a combination of informative
variables (redundant), without selecting non-informative variables.



10 3 PREDICTION OF ORIGIN-DESTINATION FLOWS

° 0.28 °
0.25
0.26
0.20 R
0.24
) ° ) L4
2015 = 0le o
g ° °
S o]
< 0.101 < 0.20 °
0.05 ¢ 0.18
... L]
0.16 -
0.00{ .

0.00 0.02 0.04 0.06 0.08 0.10 0.12

’ 0.05 0.10 0.15 0.20
Predicted MSE

Predicted MSE
Fig. 1 Test points are sorted according to the predicted mean squared error (MSE) and
then binned. The predicted MSE on the x-axis is the mean of the predicted variance for

a bin and the y-axis is the actual MSE for the test points in that bin, (left) for the small
Madelon dataset with bin size 10, (right) for the large Madelon dataset with bin size 50.
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Fig. 2 The blue line shows the posterior mean value of the local shrinkage parameters A
that determine the shrinkage of the connected variables, the colored dots show which of the
variables are true informative, redundant, and repeated, (left) for a selected model for the
small Madelon dataset, (right) for a selected model for the large Madelon dataset.

3 Prediction of origin-destination flows

3.1 Data

We apply the developed machine learning approach, H-NNGP, to the pre-
diction of intra-city origin-destination (OD) flows. The input variables are
locational attributes of the origin and destination, as well as of the locations
in between, while the target variable is the flow of individuals between origin
and destination. We test the model on a GPS-based taxi trip dataset from
New York City where the task is to predict number of trips between census
tracts based on a set of census tract variables (e.g., population size, number of
jobs) and a set of ‘link’ variables (e.g., geographic distance, number of inter-
vening jobs). We opt for a quasi experimental setting where for the training
set we randomly select mobility flows from the year 2014 and for the test set
we randomly select mobility flows from the year 2015. We additionally analyze
how the flow dynamics change over the course of a day. The H-NNGP model



3.1 Data 11

is evaluated according to prediction performance, uncertainty estimation, and
variable selection.

For the experiments, we create a dataset that contains i) aggregated OD

flows and ii) attributes data that describe the census tracts. The workflow to
build the dataset is as follows:

1

The city is divided into 2,167 census tracts [41]; each census tract represents
an origin or destination in the OD-matrix.

The pick-up and drop-off times and locations are collected for all yellow
and green taxis for the years 2014 and 2015 [42].

The latitude and longitude of the origin and destination are converted into
census tract ids.

The trips are aggregated spatially (same origin and destination) and tem-
porally (same year, weekday chunk, and hour chunk). Here weekday chunk
subdivides into weekdays/weekends and hour chunk subdivides into 2-hour
slots starting at 11pm (starting at an odd number subdivides the day into
more ‘natural’ 2-hour slots). Figure 3 shows the mapping of a selection
of binned OD flows. The frequency of trips for an OD pair was highest
in Manhattan and decreases with increasing distance from the city center;
a noteworthy exception are the airports outside the city center. Figure 3
shows the probability distribution of OD flows aggregated over all temporal
cases. The low-frequency flows are heavily over-represented in the dataset
and there is only a relatively small share of high-frequency flows.

The location attributes are selected with a heuristic approach. First, var-
ious trip purposes are defined (e.g. home-work); second, for each trip
purpose, factors are included that relate to i) trip production, e.g. num-
ber of jobs with a specific income range located at the origin, ii) trip
attraction, e.g. number of jobs with a specific income range located at the
destination and iii) interaction affinity, e.g. distance. The list of attributes
is given in table 3. Figure 4 shows the spatial distribution for three of the
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Fig. 3 Left: Spatial mapping of binned and randomly selected OD flows for taxi trips
between New York City’s census tracts in 2014 and 2015. The black dots represent New
York City’s census tracts and the colored lines represent the OD flow between them. Right:
Probability distribution of all OD flows for Taxi trips between New York City’s census tracts
in 2014 and 2015.
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attributes: number of low income jobs, number of high income jobs, and
number of amenities. For example, low-income jobs cluster in the Bronx,
high-income jobs cluster in the Upper East Side and amenities cluster at
Lower Manhattan. To sanity-check the variable selection method, a syn-
thetic attribute is added to the dataset which represents a set of random
samples from a standard normal distribution. For all job-related attributes
the LEHD Origin-Destination Employment Statistics (LODES) data [43]
is used which provides information to workforce dynamics. For the amenity
related attributes OpenStreetMap [44] is used. All Points-of-Interest that
are declared as amenities have been included.

. The flow data and the attribute data are merged into one data table with
the following columns: ID of origin, ID of destination, year, weekday chunk,
hour chunk, number of trips, and the 23 attributes associated with the
origin and destination.

. The data table is filtered for weekday chunk (e.g., only weekdays) and for
hour chunk (e.g., only trips occurring between 7am and 9am). All trips
where the origin equals the destination are filtered out.

. The data table is split into a training set (all flows occurring in the year
2014) and a test set (all flows occurring in the year 2015).

Table 3 Location attributes related to
attraction of trips, production of trips, and
interaction between origin and destination.

Trip relation Attribute

No. of low-income residents

No. of medium-income residents
No. of high-income residents
No. of low-income workers

No. of medium-income workers
No. of high-income workers

No. of amenities

Destination
(attraction)

No. of low-income residents

No. of medium-income residents
No. of high-income residents
No. of low-income workers

No. of medium-income workers
No. of high-income workers

No. of amenities

Origin
(production)

Distance between origin and destination

No. of low-income residents closer to origin

No. of medium-income residents closer to origin
Intervening No. of high-income residents closer to origin
attributes No. of low-income workers closer to origin

No. of medium-income workers closer to origin

No. of high-income workers closer to origin

Number of amenities closer to origin
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Fig. 4 Spatial mapping of the number of low income jobs of people living in each census
tract (left), the number of high income jobs (middle), and the number of amenities (right).
The dots represent census tracts and brighter colors correspond to higher numbers.

9. From the training set a small subset is selected that is used as training
data. This simulates the use case of a limited access to training data. This
is a likely scenario since it is difficult for urban planners to get access to
data that covers the entire population (e.g., due to privacy concerns). The
training data is then uniformly sampled into equally sized data bins until
each bin is filled. The data bin edges are set to [1, 10, 100, 1000, 10000]
and the bin size is set to 250. The training set therefore contains 1000 data
points. The test data is treated in a similar fashion but additionally an
unbinned test set is created to simulate a real world application.

10. Training and test sets are finally log-transformed and then linearly shifted
to zero mean and scaled to one standard deviation.

3.2 Model configurations

The network depth was tested for L € {0, 1,3}, where L = 0 corresponds to
the linear gravity model. Since all initial results were insensitive to the choice
of the hyperparameter 03, it was set to 1 for all following experiments. The
hyperparameters for the remaining priors are: (i) o, = 1 and 8, = 1072 which
gives a weakly informative prior for o2, (ii) ap = 1 and 8, = 1072 which gives
a weakly informative prior for o, 2 (iii) o = 1 and sy = 1 which results in a
weakly informative Student-t,, (0, s3) prior for the parameters far from zero,
and (iv) a,, = 107% and 3,, = 10~ which gives an uninformative prior for the
noise o, 2. For the model inference we use the Hybrid Monte Carlo algorithm
as for the synthetic data set.

3.3 Results

The following metrics are used to quantify the prediction performance of the
H-NNGP model:

 Mean squared error, MSE = + Zf\il(yZ — 2;)?, where z; denotes the pre-
dicted flow for an OD pair 7, y; is the actual flow, and N is the number of
OD pairs.
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* Mean absolute error, MAE = + Zi]\;ﬂyi — z;|. Large differences between
predicted and actual flows are penalized less compared to the MSE.

* Mean absolute percentage error, MAPE = - Zfil yy;z

e Common part of commuters, CPC = vazl % CPC is typically used

in mobility flow modeling [7].

Table 4 shows the prediction performance results for three time periods (11pm
- lam, 7am - 9am, and 3pm - 5pm), for different data bins (flows between
10 - 100, flows between 100 - 1,000, flows between 1,000 - 10,000, all bins
together, and an unbinned subset of flows) and for different model configura-
tions (L € {0,1,3}). The CPC values for all three time periods (here CPC
is only computed for the unbinned data as is common practice in mobility
modeling) show that the non-linear models (L € {1,2}) clearly outperform
the linear model (L = 0). Further, for the non-linear models a higher number
of hidden layers doesn’t necessarily add to the prediction performance. This
is also true for all other metrics for the unbinned data. We observe a simi-
lar picture for the binned data (‘all’) where the non-linear models outperform
the linear ones. Compared to the unbinned results, the MSE and MAE are
much higher and the MAPE is lower, which indicates the highly right-skewed
nature of the flow data (with many small flows and a few very large flows).
By zooming into the individual bins we can see the contributions of each bin
to the overall errors. Generally, compared to the bins with smaller flows, the
bins with larger flows contribute more to the MSE and MAE but contribute
less to the MAPE. This shows that the models in absolute numbers are bet-
ter in predicting small flows but in relative numbers are better in predicting
large flows. With one exception, the non-linear models always outperform the
linear models for all individual bins. Interestingly, the errors for the period
11pm - lam are much smaller than for the other two time periods. The higher
accuracy might be due to the more specialized trips (such as taking a taxi
back home from nightlife) where amenities cluster at certain locations and OD
patterns are more predictable.

Figure 5 shows the absolute percentage error for the binned test data for
the three different time periods and for the three different H-NNGP versions.
The higher accuracy of the non-linear models compared to the linear gravity
models is clearly visible, while there is no pronounced difference between one
hidden layer and three hidden layers. For instance, the non-linear models seem
to predict flows originating or ending at the airports (John F. Kennedy and
LaGuardia) much better than the linear models.

The second part of results concerns the uncertainty estimation perfor-
mance. An advantage of the Bayesian formulation compared to existing
methods is that it allows to assign a variance to each test point prediction
which encodes how certain the model is about a prediction. Figure 6 shows the
correlation between uncertainty estimates and prediction error. For all cases
there is a monotonic relationship between uncertainty estimates and prediction
error: the more uncertain the model is about it’s predictions (high predicted
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Table 4 Prediction performance. The winning models are highlighted in bold.
Time Bin L MSE MAE MAPE CPC
11pm - lam 10! - 102 0 13913 33.8 1.21 -
1 3774 28.1 0.97 -
3 3660 28.2 0.98 -
102 - 103 0 343332 258.4 0.97 -
1 86273 191.2 0.77 -
3 82016 189.5 0.77 -
103 - 104 0 928468 736.9 0.53 -
1 347263 443.4 0.31 -
3 326449 426.2 0.30 -
all 0 321473 258.4 1.41 -
1 109362 166.7 0.99 -
3 103064 162.0 0.99 -
unb. 0 24 2.5 1.72 0.51
1 17 1.9 1.14 0.60
3 15 1.9 1.12 0.60
7am - 9am 10t - 102 0 16656 49.2 1.82 -
1 22438 45.6 1.60 -
3 24548 46.6 1.64 -
102 - 103 0 419559 285.9 0.91 -
1 161593 253.1 0.89 -
3 158017 252.9 0.90 -
103 - 104 0 3914048 1280.0 0.67 -
1 1689091 906.1 0.47 -
3 1641515 885.9 0.45 -
all 0 1085868 406.1 2.44 -
1 467710 302.6 1.63 -
3 455499 297.7 1.64 -
unb. 0 169 5.1 3.33 0.38
1 66 2.8 1.57 0.55
3 77 2.9 1.65 0.54
3pm - 5pm 10! - 102 0 14147 43.6 1.73 -
1 9247 35.6 1.34 -
3 9467 36.0 1.35 -
102 - 103 0 646645 298.2 0.94 -
1 128027 217.2 0.76 -
3 124870 216.0 0.76 -
103 - 104 0 3434681 1208.0 0.71 -
1 1183909 731.7 0.41 -
3 1120180 706.1 0.40 -
all 0 1023451 389.6 2.17 -
1 330176 247.4 1.35 -
3 313529 240.8 1.36 -
unb. 0 118 4.7 3.00 0.40
1 101 3.1 1.73 0.52
3 110 3.3 1.81 0.51
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MSE) the larger the actual error will be (high actual MSE). This characteristic
is a very valuable feature when the models are used in practice. For exam-
ple, it allows urban planners to only rely on the model’s predictions when the
model is very certain. The non-linear models give much better estimates of
the MSE compared to the linear models.

The third part of results concerns the variable selection performance.
Figure 7 shows the posterior values for all local shrinkage parameters for the
three versions of H-NNGP applied to the time period 7am - 9am (morning
rush hours). The values are the means of the corresponding MCMC chains and
indicate the importance of a particular feature. High relevance values in the
non-linear models additionally indicate high non-linearity of the feature. The
random feature is zero for all models showing that they pass this sanity check.
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Fig. 5 Absolute percentage errors of the predicted flows in New York City for the binned
test data. The errors are shown for flows occurring between 11pm - lam (first row), 7am -
9am (second row), 3pm - 5pm (third row) and for the H-NNGP with zero (first column),
one (second column), and three hidden layers (third column). The colormap is normalized
within each row and brighter colors indicate larger errors.
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Fig. 6 Predicted versus actual MSE for the binned test data. Means are computed by
averaging over 50 data points. The correlation plots are shown for flows occurring between
11pm - lam (first row), 7am - 9am (second row), 3pm - 5pm (third row) and for the H-NNGP
with zero hidden layer (first column), one hidden layer (second column), and three hidden
layers (third column).

For the non-linear models, the variable selection results are the same for
the model versions with 1 and 3 hidden layers, again suggesting that a larger
number of hidden layers do not necessarily discover more patterns in the data.
The non-linear models detect the home-work trip patterns. For instance, at
the origin location, the number of high-income residents is the most important
feature for the taxi trips, while at the destination location the most important
feature is the number of high-income workers. The relevant feature related to
trip friction is distance. Because the non-linear models are able to pick up
non-linear relations between the features, they also perform well at predicting
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Fig. 7 Feature relevance for predicting flows that occurred 7am - 9am for the linear model
with zero hidden layers (H-NNGP-0, equivalent to the linear gravity model), the non-linear
model with one hidden layer (H-NNGP-1) and the non-linear model with three hidden layers
(H-NNGP-3).

trips that deviate from the home-work patterns. Examples are trips from and
to the airports as has been shown in Fig. 6.

In summary, the comparison between the different versions of the H-NNGP
model shows that i) the non-linear versions outperform the linear versions, ii)
for the non-linear versions a higher number of hidden layers doesn’t necessarily
add to prediction performance, iii) the more uncertain the models are about
their predictions, the larger the actual error will be and iv) only the non-linear
model versions can detect trips that diverge from predominant patterns and
are related to more specialized places, such as trips from and to the airports.

4 Conclusion

This paper presents a novel machine learning approach for the prediction of
mobility flows. The main advancement over existing methods is the ability
to quantify the uncertainty of the predictions. This is achieved through exact
Bayesian inference on deep neural networks that are formulated as Gaussian
processes. The resulting H-NNGP model outperforms the prediction accu-
racy of traditional mobility models that do not consider non-linearity, and it
allows for the identification of the most relevant urban features that affect the
magnitudes of the mobility flows.

The uncertainty quantification is particularly relevant for the planning
of transportation systems and other urban infrastructures, since such large-
scale interventions require a high confidence in the mobility predictions. The
identification of relevant geographic features that determine the flows can be
taken as a starting point to gain a deeper understanding of the underlying



19

mechanisms. This may help to further refine existing explainable yet rather
coarse-grained models with few parameters (e.g., [45]), so as to better capture
location-specific variabilities. To that end, the proposed approach will need to
be tested on more comprehensive mobility data (e.g., mobile phone records), on
additional geographic features (e.g., efficiency of the transportation system),
and it will need to be applied to different geographic regions across the world.
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