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Abstract 

We provide new empirical and theoretical evidence on the spatial consequences of 

public policies driven by electoral motives. Using exogenous variation in the timing 

of natural disasters, we show that hurricanes occurring close to Election Day in the 

United States lead to increased local post-disaster efforts. These electorally motivated 

measures lead populations to sort into hazard-prone areas. To comprehend the 

aggregate implications of this sorting pattern, we introduce the relationship between 

electoral cycles and public policies in a spatial equilibrium model. These electorally 

motivated policies generate considerable productivity and output losses without 

being compensated by aggregate welfare gains.  
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1 Introduction

Electoral motives often affect the allocation of resources for public policies. In targeting specific groups

or places, incumbents may strategically try to maximize their reelection prospects. At the same time,

shifting fiscal resources across the economy alters the relative attractiveness of locations. The resulting

spatial sorting may lead to inefficient equilibrium outcomes with sizable aggregate implications since

households usually neglect the impact of their location decisions on other agents. Consequently, when

public policies are at the center of voters’ attention, electoral motives may alter the spatial distribution

of fiscal resources with significant spillovers on the rest of the economy.

This paper focuses on post-disaster measures, a particularly salient policy matter for many political

candidates when large disasters occur amid an electoral campaign. We document a trade-off between

providing legitimate aid to affected populations and encouraging more people and capital to stay in

hazard-prone areas. Indeed, transfers to regions affected by natural disasters can revitalize the local

economy and deter workers and businesses from relocating at the cost of shifting the labor force away

from the economy’s most productive regions. In the United States, counties that received federal post-

disaster assistance following a hurricane grew, on average, 4.97% faster than the rest of the country

between 2001 and 2019 (i.e., 5, 900 more individuals per county).1 We claim that electoral motives

cause a misallocation of post-disaster resources large enough to distort the spatial distribution of

economic activity in the United States.

To identify the impact of the electoral cycle on local post-disaster efforts in the United States, we

exploit the timing of hurricane landings relative to Election Day as an exogenous variation of natural

disasters with greater electoral importance.2 Election Day occurs on the first Tuesday of November in

even years; because the hurricane season occurs between June and November, it is a salient electoral

matter every other year. Additionally, whether hurricanes’ timing is concurrent with Election Day

is as-if random, giving us an adequate empirical setting to leverage variation in post-disaster policy

efforts. Conditional on location and time fixed effects, the quasi-random trajectory of hurricanes

implies that we can take the exact place and landfall time of a hurricane as exogenous.

1We identify counties obtaining post-disaster assistance as those receiving a disaster declaration from the President
of the United States after a hurricane, excluding declarations related to the hurricane Katrina evacuation plan, which
incorporated far-away, unaffected counties. For comparison, we focus on the continental United States as, between 2001
and 2019, 99% of all counties within coastal states received either an emergency or major disaster declaration from
federal authorities. We extract disaster declaration information from the FEMA Open Database and population data
from the SEER database.

2Election Day happens every other year and directly affects the composition of Congress, which votes on different
budgetary accounts such as the Disaster Relief Fund. Indeed, there is a general election every two years to replace the
entire House of Representatives and a third of the Senate. Voters generally decide on many other federal offices on that
same day, such as the presidential office (every four years) and, depending on the location, gubernatorial and local offices.
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Using the timing of hurricanes as an exogenous shock, we study local budget responses to electorally

driven post-disaster efforts and the subsequent population sorting at the county level between 2001

and 2019. To achieve this analysis, we employ an event study approach (Callaway and Sant’Anna,

2021) to estimate the dynamic consequences of hurricanes occurring less than a year before Election

Day (i.e., “on-cycle” hurricanes) and hurricanes occurring more than a year before Election Day (i.e.,

“off-cycle” hurricanes).

We find that local public goods provision increases significantly by, on average, 4.1% in counties hit

by on-cycle hurricanes compared to the rest of the U.S. counties. At the same time, the population rises

significantly and permanently by an average of 4.7%. In contrast, we do not find statistically significant

responses when off-cycle hurricanes strike. Importantly, these results remain qualitatively similar

when using alternative estimators or control groups, controlling for storm intensity, or considering

more extended periods or other extreme natural disasters such as floods or wildfires. In line with

the literature (e.g., Besley and Case, 1995; Besley and Burgess, 2002; Eisensee and Strömberg, 2007;

Healy and Malhotra, 2009), using alternative political dimensions (e.g., political alignment) instead of

electoral cycles supports the hypothesis that electoral motives powerfully drive post-disaster efforts.

We also find that the increased local public goods provision is not financed by local authorities

but rather by intergovernmental transfers that shift other regions’ fiscal resources to the impacted

areas. This electorally motivated intervention leads to a temporary contraction of the local economy

by diverting private labor demand to non-tradable, government-sponsored activity. Nevertheless, such

electoral-motivated efforts also improve local amenities by upgrading roads, energy grids, and waste

management beyond pre-disaster standards. This latter amenity channel is critical to rationalizing

population sorting patterns after an on-cycle hurricane.

To quantify and comprehend the implications of these distortions for the aggregate economy, we

embed electoral-cycle-driven public policies in a dynamic spatial equilibrium model (Desmet and Rossi-

Hansberg, 2015; Desmet et al., 2018, 2021; Cruz and Rossi-Hansberg, 2021). We interpret the public

policy component of the post-disaster policies as a fiscal transfer scheme that reallocates resources

across space. Moreover, we allow both the amenity and the production functions to be shocked by

the government’s intervention in local quality of life and productivity.

We choose parameter values that reflect the U.S. economy. In particular, we identify the causal

effects of major hurricanes on amenities, productivity, tax rates, and transfer rates across the electoral

cycle at the county level. Our calibrated model economy generates quantitatively equivalent population

and wage responses in reaction to post-disaster policies along the electoral cycle, as observed in the
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data. We then use our quantified model to evaluate the implications of alternative versions of post-

disaster policies for the aggregate economy. We simulate the model forward for 80 years under two

scenarios: a baseline scenario that is simulated under the current electoral-cycle-driven post-disaster

policy, and a counterfactual scenario where we remove the electoral cycle’s impact.

By simulating our dynamic spatial model under plausible parameter constellations, we find that

these distortions are large enough to affect the aggregate economy. Continuing the current electoral-

cycle-driven post-disaster policy lowers aggregate productivity and output after 80 years and leads

populations to sort to hazard-prone coastal areas. The spatial reallocation of labor into exposed

regions decongests highly productive areas such as New York, Chicago, and the San Francisco Bay

Area. Fewer workers live in dense, productive regions, while less crowded coastal regions around the

Gulf of Mexico, Southeast Florida, and the Atlantic Ocean become endogenously more productive.

Most of this population sorting pattern is due to the local quality of life improvements in on-cycle

counties. The excessive redistribution of public resources and subsequent redevelopment after on-

cycle events impact substantially large productive areas, causing sizable aggregate productivity and

output losses. The latter productivity effect cancels amenities’ positive impact, leaving social welfare

unaffected.

In particular, we calculate that the current post-disaster policies increase on-cycle county popula-

tions by up to 13.06% in 80 years at the expense of high-productivity cities. As a result, the current

electoral-cycle-driven post-disaster policy decreases the present discounted value of real GDP by 1.17%

relative to our counterfactual scenario without the impact of the electoral cycle on the post-disaster

economy. The resulting welfare change is only +0.17%. Furthermore, we compute the efficiency cost

of maintaining the current policies (Mayshar, 1990; Hendren and Sprung-Keyser, 2020) and show that

for every dollar worth of electorally motivated post-disaster transfer, U.S. residents would be willing

to pay only $0.43.

We conclude that politically motivated public policies that shift fiscal resources across space have

significant spillovers on the rest of the economy. Incumbent governments are incentivized to deliver

more post-disaster aid when electoral accountability is high. By doing so, these electoral-cycle-driven

post-disaster policies shift labor into natural hazard-prone coastal areas away from the most produc-

tive American cities. Social welfare will presumably decline if electoral motives extend post-disaster

measures further across the electoral cycle.

In quantifying the spatial consequences of public policies along the electoral cycle, we intend to

combine the lessons of the economic geography and political economy literature in a unified, consistent
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framework. In general, electoral motives, embedded in institutional design, play a significant role in

resource allocation in the economy (Sieg and Yoon, 2017; Finan and Mazzocco, 2021). The political

economy literature has long demonstrated the importance of the electoral cycle for redistributing fiscal

resources as policymakers tend to increase expenditures and delay tax increases close to an election

(Rogoff, 1990; Rogoff and Sibert, 1988; Besley and Case, 1995). Post-disaster measures often belong to

this class of electorally motivated redistribution. Adverse shocks, such as hurricanes, generally reduce

local governments’ budget capacity to recover (Jerch et al., 2023), justifying higher-governments’

fiscal support. However, the importance and location of these policies appear to be driven by electoral

accountability (Besley and Burgess, 2002; Strömberg, 2004; Eisensee and Strömberg, 2007; Healy and

Malhotra, 2009; Cole et al., 2012; Gagliarducci et al., 2019).

To our knowledge, this literature has never studied the impact of the subsequent location decision

distortions on aggregate output and welfare. Indeed, the economic geography literature has long

emphasized the equity efficiency trade-off brought by resources spatial redistribution (Glaeser and

Gottlieb, 2008; Kline and Moretti, 2014) and recently challenged by the introduction of heterogenous

workers (Gaubert et al., 2021). This fundamental trade-off eventually led researchers to focus on the

optimal redistribution design that would minimize efficiency costs (Albouy et al., 2019; Fajgelbaum

et al., 2019; Fajgelbaum and Gaubert, 2020). However, this class of models assumes the existence of a

benevolent planner acting on behalf of the median voter and, respectively, abstracts from any political

economy mechanism. This paper further underscores the crucial role of government intervention in

the mechanisms driving population spatial sorting after a natural disaster. An extensive strand of

the literature is interested in documenting the impact of unexpected adverse shocks, particularly

natural disasters, on economic activity and spatial sorting (Davis and Weinstein, 2002; Hornbeck,

2012; Boustan et al., 2012; Hauer, 2017; Spitzer et al., 2020; Mahajan and Yang, 2020; Kocornik-Mina

et al., 2020). These shocks directly affect location decisions through productivity and output (Strobl,

2011; Dell et al., 2012, 2014; Boustan et al., 2020) or changes in local amenities, such as the perception

of future risks (Deryugina, 2013; Gallagher, 2014; Howe et al., 2015; Bakkensen and Barrage, 2021;

Gibson and Mullins, 2020; Bakkensen and Ma, 2020; Bernstein et al., 2021). Local quality of life

is a crucial determinant of population sorting (Rosen, 1979; Roback, 1982; Albouy and Lue, 2015;

Albouy, 2016; Diamond, 2016; Ahlfeldt et al., 2020) with potential long-lasting implications (Lee and

Lin, 2018; Heblich et al., 2021).

This literature, however, often abstracts from the effect of endogenous public policy responses on

spatial sorting. Consistent with the Dutch disease hypothesis, post-disaster intervention might cause a
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temporary contraction of the local economy (Corden and Neary, 1982; Rajan and Subramanian, 2011;

Allcott and Keniston, 2017; Bulte et al., 2018), and at the same time, transfers to households and local

authorities—e.g., as targeted revitalization programs—might translate into positive amenity spillovers

(Rossi-Hansberg et al., 2010; Diamond and McQuade, 2019; Fu and Gregory, 2019). The initial

effect of the government intervention on local amenities might also later drive population sorting via

local multipliers (Chodorow-Reich, 2019; Corbi et al., 2019). We simultaneously consider government

interventions’ impact on amenity and productivity channels and document how each might influence

population sorting across space.

Finally, we provide new empirical and theoretical methodology contributions. Empirically, we

introduce the timing of hurricanes relative to the electoral cycle as a novel source of exogenous vari-

ation in post-disaster efforts. Interested researchers may extend the electoral timing of disasters to

a more extensive set of exogenous catastrophes (e.g., tornados, droughts) and elections (e.g., munic-

ipal, gubernatorial). The timing of natural disasters to an election can then help leverage important

information about the role played by electoral motives on other post-disaster outcomes, such as green

bill production (Gagliarducci et al., 2019) or local partisan sorting (Bernstein et al., 2021). The-

oretically, we extend an economic geography dynamic spatial equilibrium framework (Desmet and

Rossi-Hansberg, 2015; Desmet et al., 2018, 2021; Cruz and Rossi-Hansberg, 2021; Conte, 2022) by in-

cluding a government sector (Henkel et al., 2021) influenced by a political economy feature in the form

of an electoral cycle. This novel extension allows one to study the aggregate consequences of a wide

range of public policies beyond post-disaster efforts and whose implementation may vary along the

electoral cycle, such as corporate taxation (Foremny and Riedel, 2014), value-added taxation (Haller-

berg and Scartascini, 2017; Benzarti et al., 2020), or public services efficiency (Bertoli and Grembi,

2021).

The rest of the paper is as follows. Section 2 provides information on fiscal revenues redistribution,

post-disaster policies in the U.S., and hurricanes. Section 3 summarizes the data sources, and Section 4

presents our empirical strategy and results. Section 5 develops the dynamic spatial general equilibrium

model we use to interpret the empirical findings. Section 6 describes the quantification of the model,

while Section 7 documents the counterfactual analysis. Section 8 concludes.

5



2 Hurricanes and Post-Disaster Policies

In this section, we provide some background information on the spatial distribution of fiscal resources

and post-disaster policies in the U.S. as well as hurricanes, our main treatment.

2.1 Fiscal Resources and Post-Disaster Policies

Fiscal revenues redistribution. We are interested in the spatial distribution of fiscal revenues in

the United States, which occurs via various public policies or programs and provides macroeconomic

stabilization across regions (Farhi and Werning, 2017). One crucial source of public funds for local

governments is intergovernmental transfers (Agrawal et al., 2022; Bruce et al., 2019; Carlino et al.,

2023). Concurrently, transfers from the federal government and states to local governments constitute

around 3.43% of total GDP, and 41% of local budgets come from the federal government and states

(Government Finance Database). Federal assistance expansion often happens during economic down-

turns and after catastrophic events like natural disasters. In particular, between 2001 and 2019, the

federal Disaster Relief Fund (DRF) provided approximately $15.7 billion (in current dollars, constant

(FY2012)) annually to state, local, and tribal agencies and groups through grants and cooperative

agreements (Painter, 2019). The spatial redistribution of tax revenues and transfers affects the allo-

cation of economic activity through local spending and subsequent welfare (Fajgelbaum and Gaubert,

2020; Henkel et al., 2021). Additionally, redistributing resources from high- to low-productive areas

may affect aggregate output (Albouy, 2009; Colas and Hutchinson, 2021; Hsieh and Moretti, 2019;

Wildasin, 1980). It is, therefore, crucial to understand the underlying institutional structure and

electoral motives—beyond economic efficiency considerations—that affect this redistribution of public

resources.

Post-disaster policies. In the United States, local governments’ post-disaster policies are finan-

cially supported by the DRF, which is voted on and funded by Congress and is managed by the Federal

Emergency Management Agency (FEMA). The DRF is the primary funding source for the federal gov-

ernment’s domestic general post-disaster programs. Other post-disaster programs exist, such as Small

Business Administration loans. However, FEMA remains historically the largest provider of post-

disaster assistance through the DRF. Importantly, catastrophic events (i.e., causing over $500 million

in projected costs to FEMA) are the major driver of DRF funding (Painter, 2019). These disasters

are often caused by hurricanes and subsequent hazards (such as floods and storm surges). Out of the

31 disasters for which FEMA provided more than $500 million in assistance between 2001 and 2019,
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28 were caused by severe storms or hurricanes.3

States must request a Presidential Declaration of Disaster (PDD) to access federal support for

natural disasters.4 The Stafford Act of 1988 defined a major disaster as “any natural catastrophe ...

or, regardless of cause, any fire, flood, or explosion, in any part of the United States.” As specified

by the 1988 amendment, a PDD identifies counties eligible for federal assistance and the associated

grant programs. These programs make state and local governments and individuals eligible for relief

or preparation funds, most of which are financed by the DRF. As a result of the Stafford Act, the

president and, in general, the executive branch has considerable discretionary powers over post-disaster

intervention.

When a county receives a PDD, local governments and individuals can apply for FEMA support

for immediate relief (e.g., debris removal) or mitigation of future risks (e.g., road elevation). While the

most extensive amounts are allocated in the immediate aftermath of the disasters, DRF appropriations

build on the subsequent years to address long-term recovery costs (Painter, 2019). For instance, the

DRF Monthly Report of January 2023 confirms fundings for counties affected by Hurricane Sandy,

which occurred in 2012. These later transfers complement the initial relief in providing or adjusting

local mitigation plans and infrastructures. Finally, social insurance programs also endogenously react

to natural disasters. In particular, Deryugina (2017) shows that significant transfers from traditional

safety net programs (such as unemployment insurance or Medicare) occur in the years following federal

disaster assistance.

2.2 Hurricanes in the United States

Tropical origins and season. Hurricanes are tropical cyclones forming in the North Atlantic

basin characterized by a rotating storm system involving high winds and a low-pressure center. They

typically form as moisture rises above the water, generally in areas of pre-existing low pressure. This

process requires waters to reach temperatures of at least 26°C (80°F), which, in the Atlantic, happens

only in tropical or subtropical regions during the summer. As moisture rises, it attracts more air

above the water, causing more moisture to ascend. Large, heavy clouds form as the humid air cools

off. Because of Earth’s spin and the Coriolis effect, the storm starts rotating counterclockwise and

generally moving west. During the late summer season, vertical wind shear is less present, thus

favoring the creation of cyclones with appropriate heat and humidity conditions.

3See the disaster summaries provided by (FEMA).
4While states’ governors can issue declarations of disaster, states do not generally provide substantial relief (Sylves,

2019).
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According to the National Center for Atmospheric Research, hurricanes can be up to 600 miles (ca.

966 kilometers) long and have powerful gusts spiraling upward from 75 mph (ca. 121 kilometers per

hour) to 200 mph (ca. 322 kilometers per hour). They usually last over a week, moving 10–20 mph

over the open ocean. When the cyclone makes landfall, it loses its fuel—the ocean moisture—and

quickly vanishes. Because of the conditions mentioned above, the hurricane season spans between

June and November in the North Atlantic basin.

Classification and frequency. Like most natural disasters, hurricanes do not simply appear but

are specific storms that have evolved from milder conditions. In particular, a hurricane is a tropical

storm that is a type of tropical depression. A tropical depression is classified as a tropical storm when

maximum sustained winds reach 39 mph (ca. 63 kilometers per hour).

The Saffir-Simpson scale5 categorizes hurricanes on a 1-to-5 scale based on the maximum one-

minute sustained winds (which does not account for other related hazards, such as storm surge or

heavy rainfall). A tropical storm becomes a category one hurricane when winds get up to 73 mph (ca.

117 kilometers per hour). A “major” hurricane is of category 3 (≥ 111 mph (ca. 179 kilometers per

hour)) or above. A hurricane enters the top category—category 5—when maximum sustained winds

reach 157 mph (ca. 253 kilometers per hour). Examples of category five hurricanes include Dorian,

who caused significant fatalities and destruction to the Bahamas in 2019, and Andrew, who struck

Louisiana and Florida in 1992.

Appendix Table A.1 summarizes the number of historical hurricanes in the North Atlantic basin

from 1851 to 2019. This paper focuses on the impact of hurricanes (i.e., rotating storm systems

characterized by at least 73 mph maximum winds) that made landfall on the U.S. Atlantic coast

between 2001 and 2019.

3 Data

We combine data from several U.S. sources in our empirical analysis. To investigate the relationship

between post-disaster policies and the sorting responses of economic activity, we collect yearly data

from the International Best Track Archive for Climate Stewardship (IBTrACS), the Surveillance Epi-

demiology and End Results (SEER) population database, the Bureau of Economic Analysis (BEA),

and the Government Finance Database, at the county level in the continental U.S. between 2001

and 2019. Our main economic variables are available across all counties and sources from 2001 on-

5See the Saffir-Simpson Hurricane Wind Scale Extended Table provided by the National Hurricane Center (NHC).
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wards, and population data from 1969 onwards. We combine these data sources with various other

information at the county level.

3.1 Data Sources

IBTrACS. The IBTrACS dataset, provided by the National Oceanic and Atmospheric Administra-

tion (NOAA), includes the spatial and temporal distribution of tropical cyclones worldwide. It is one

of the complete global sets of historical tropical cyclones available. We use the reported timing—every

six hours—and the extent of hurricanes. The list of the U.S. hurricanes included in our sample is

summarized in Table A.2. Over our sample periods, 33 hurricanes occurred, all during the hurricane

season, between July and November. The intensity and the wind speed of tropical cyclones vary across

hurricanes. We match the date of hurricanes (Column (1)) to the closest Election Day date (Column

(9)) and calculate how many days are left until the next Election Day when the hurricanes hit. We

define a hurricane as an on (off) cycle event if the next election is set less (more) than 365 days after

the hurricane hits.

To extract local wind speeds, we use the CLIMADA wind field model, supported by the ETH

Zürich. The algorithm essentially computes the one-minute sustained peak gusts in each cell of a

gridded map as the sum of a circular wind field (Holland, 2008) and the translational wind speed that

arises from the storm movement (Aznar-Siguan and Bresch, 2019). We bring the IBTrACS hurricane

data to this model and define a grid cell resolution of 0.12 degrees (approximately 12 km).

SEER population database. The SEER population database provides detailed population counts

by age, gender, and race since 1969. This database, already used by Deryugina (2017), provides

practical, clean, and consistent intercensal estimates. The original population source is taken from

the U.S. Census.

BEA. The BEA stores useful county-level information spanning back from at least 2001 (and up

to 1969) to nowadays. We collect information on GDP, employment, personal wages, incomes, and

non-disaster transfers (e.g., Medicare and unemployment benefits). We also download this information

by NAICS industry when available. Combined, these data provide detailed and precise information

on the counties’ labor market and production profiles between 2001 and 2019.

Government Finance Database. The Government Finance Database (Pierson et al., 2015) col-

lects, cleans, and classifies in a standard way the information provided by the Census of Governments.
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We compile local public finance information for spending and revenue categories aggregated at the

county level. Because this information is only available every five years (years ending with “2” or

“7”), we infer intercensal data points from the corresponding yearly series available at the state level

at the Tax Policy Center.

Miscellaneous sources. We further collect and aggregate at the county level information from

different secondary sources, including FEMA post-disaster grants and PDDs freely accessible on the

FEMA webpage, County Business Patterns, county-to-county migration data from the Internal Rev-

enue Service’s (IRS) SOI Tax Stats, and electoral data, collected at the county and state levels from

the MIT Election Lab.

3.2 Defining the Treatment

In our preferred specification, we define counties hit by hurricanes as those within a hurricane’s radius

of maximum winds. This definition presents the advantage of only considering the same six-hour

(maximum) winds within a storm. Nonetheless, these wind intensities might differ across different

categories of hurricanes (i.e., two counties hit simultaneously by other hurricanes might be differently

affected). Later, we show that our results remain unaffected when defining treated areas as hit by

major hurricane winds (i.e., ≥ 50 m/s). This second definition has the advantage of considering specific

wind categories (i.e., category 3 and above) based on a hurricane’s absolute wind field distribution.

However, wind velocities within a storm might not be similar (i.e., two counties hit simultaneously

by the same hurricane might be differently affected). We will show that the results are qualitatively

robust to alternative specifications and controlling for wind speeds, regardless of whether the threshold

is determined by the hurricane’s radius of maximum winds or by the Saffir-Simpson expression.

We define hurricanes occurring less than a year before Election Day (i.e., “on-cycle” hurricanes) and

hurricanes occurring more than a year before Election Day (i.e., “off-cycle” hurricanes). The regular

hurricane season lasts from June to November in the North Atlantic basin, but most hurricanes occur

during the fall. This timing, which takes its roots in the tropics’ weather conditions, is orthogonal

to Election Day that Congress set, in 1845, on the first Tuesday of November to allow farmers to

travel to the polling station after the fall harvest. Between 2001 and 2019, 33 hurricanes hit the U.S.

Atlantic coast, with 17 occurring less than 365 days before Election Day (on-cycle disaster) and 16

happening more than 365 days after (off-cycle disaster). On average, a cyclone in our sample occurred

268 days before Election Day. However, this number varies greatly due to the timing specific to the
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Figure 1: On- vs. Off-Cycle Hurricanes’ Spatial Distribution and Wind Extent

Notes: The top panel displays the radius of maximum winds of all hurricanes that have made landfall in the U.S.
between 2001 and 2019 using IBTrACS hurricane data. The bottom panel displays the wind distribution of hurricanes
Sandy and Katrina according to the CLIMADA wind field model using IBTrACS hurricane data. Saffir-Simpson wind
intensities: tropical storms (18–32 m/s), minor hurricanes (categories 1 and 2; 32–50 m/s), major hurricanes (categories
3–5; ≥50 m/s).
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hurricane season. In our sample, 51.5% of the hurricanes occurred less than 365 days before Election

Day (on-cycle), and nearly half of the counties ever hit were hit by an on-cycle hurricane. Importantly,

the average wind speed during on-cycle hurricanes (90 mph) is not statistically different from that

of off-cycle hurricanes (94 mph). Similarly, the average air pressure during on-cycle hurricanes (966

mb) is not statistically different from the average air pressure during off-cycle hurricanes (963 mb).6

Appendix Table A.2 provides detailed information about the timing and extent of on- and off-cycle

hurricanes.

The upper panel in Figure 1 shows our sample’s spatial distribution of on- and off-cycle hurri-

canes. Here, the extent is defined by the radius of maximum winds. On- and off-cycle hurricanes

are geographically balanced. The bottom panel in Figure 1 shows how the CLIMADA wind field

model applies to two of the most famous on- and off-cycle hurricanes of our sample period—Sandy

and Katrina, respectively, and displays how the absolute wind intensities diffuse in space. We later

use this information to control for local wind intensities and distinguish hurricanes’ impacts by wind

category. Finally, Appendix Table A.3 displays the 2001 values of our main outcomes of interest—

local population and public budget characteristics— for counties ever hit by a hurricane between 2001

and 2019. Counties hit first by on-cycle hurricanes are statistically similar to counties hit first by

off-cycle hurricanes along these attributes.

4 Empirical Evidence

In this section, we employ a difference-in-difference strategy adapted for staggered designs to determine

how electoral motives, as proxied by the timing of hurricanes relative to Election Day, affect the

provision of local public goods and the subsequent population sorting after a disaster.

4.1 Empirical Strategy

We are primarily interested in understanding how hurricanes affect the relative attractiveness of lo-

cations across the electoral cycle compared to the rest of the economy. Throughout the analysis, our

identifying assumption is that, conditional on county and year fixed effects, a hurricane’s occurrence

and path are as good as random. A fortiori, the occurrence of a hurricane in a given place at a specific

temporal distance from the next Election Day is as good as random and is therefore uncorrelated with

other local economic shocks. In estimating the impact of on- and off-cycle hurricanes (i.e., our treat-

6The standard storm surge associated with these values is typically 9 to 12 feet high and 50 to 100 miles wide. See
the online glossary provided by the U.S. Southeast Coastal Ocean Observing Regional Association (SECOORA).
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ments) on the outcome variables, we would ideally compare treated areas to identical but unaffected

areas. However, the empirical challenge lies in specifying an appropriate comparison group to recover

causal effects. Compared to an ideal setting, control counties might neither be perfectly identical (e.g.,

if they are far away from exposed regions) nor completely unaffected by hurricanes (e.g., located in

exposed regions).

First, our comparison group could be contaminated because hurricanes are staggered events. The

difference-in-difference literature has recently pointed out potential threats to identification when treat-

ment timing varies across units and periods (Borusyak et al., 2022; De Chaisemartin and d’Haultfoeuille,

2020; Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; Goodman-Bacon, 2021; Baker et al.,

2022). With treatment rollout, already-treated units act as controls, potentially leading to average

treatment effects of the opposite sign. To address this issue, we implement Callaway and Sant’Anna

(2021)’s estimator, which extends Sant’Anna and Zhao (2020)’s procedure to staggered treatment de-

signs. Earlier literature acknowledged the difficulties in finding ideal comparison groups and developed

several semi or non-parametric techniques to improve the chances that the parallel trend assumption

holds conditional on covariates (e.g., Abadie, 2005; Heckman et al., 1997, 1998). The Doubly robust

estimator, recently designed by Sant’Anna and Zhao, 2020 and extensively used in this paper, builds

on this literature.7

However, accounting for staggered designs and using the Doubly robust estimator might not guar-

antee the validity of our strategy, as our control group could fundamentally differ in trends from our

treated units. For example, if the population declines in never-treated counties compared to treated

ones before the treatment, there is a high chance it would do so past the treatment. In this case, one

would overestimate the average impact of hurricanes on population sorting. A natural approach to

make comparisons across units as accurately as possible is to restrict the control group only to areas

subject to being hit by hurricanes.8 However, satisfying the pre-trend requirements does not ensure

parallel post-treatment outcome evolution. In particular, restricting the sample of analysis to coastal

counties suffers from potential spillover effects, likely affecting post-treatment trends.

Indeed, because hurricanes are geographically clustered events, physically closer control units will

mitigate the risks of violating the pre-trend assumption at the expense of the control group no longer

7In the case of large natural disaster shocks such as hurricanes, the Callaway and Sant’Anna (2021) estimator might
be preferable over the class of imputation estimators (e.g., Borusyak et al., 2022; Gardner, 2022; Wooldridge, 2021), also
suited for staggered treatment designs, as serial correlation in population and local public good provision might be high.
See Roth et al. (2022) for a discussion.

8For instance, Strobl (2011) focuses on the coastal counties defined by the Strategic Environmental Assessments
Division of the National Oceanic and Atmospheric Administration (NOAA). Similarly, Deryugina (2017) restricts her
sample to counties belonging to Atlantic coastal states to avoid including units that may fundamentally differ in trends
from the treated ones before the shock occurs.
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identifying the counterfactual trend (Butts, 2021). For instance, unaffected neighboring regions might

indirectly benefit from increased public spending in affected areas, stimulating labor markets and local

trade networks (Belasen and Polachek, 2008, 2009). Further, unaffected areas in the same exposed

region could not benefit from improved quality of life through collaborative risk reduction programs,9

hence reducing disamenities from exposure and thus attracting more populations (McNamara and

Keeler, 2013). Such spillovers and endogenous responses might impact both treated counties and

unaffected but physically close or similar counties along the coast. If hurricanes, especially occurring

close to elections, also encourage economic activity sorting in unaffected counties, our main effect

would be biased downward by including such physically close areas in our control group.

With this trade-off in mind, Appendix A.3.1 reports our main outcome results using alternative

comparison groups (namely counties directly surrounding affected areas, counties exposed to future

tropical storms and hurricanes, unexposed counties, and the rest of the continental United States).

Importantly, we show that these estimates are not significantly different from one another. However,

on average, control groups subject to spatial spillovers (i.e., close to the treated areas) yield smaller

ATTs, and control groups subject to different pre-trends (i.e., distant from treated areas but not

exposed to storms) yield larger ATTs, as expected from our discussion. For our policy simulations in

Section 7, we are interested in how hurricanes affect the relative attractiveness of affected locations

across the electoral cycle with respect to the rest of the economy. Therefore, our baseline estimates

contain the rest of the United States in our main comparison group, including not-yet-treated counties.

Last, note that some areas in our sample experienced more than one hurricane during this period,

while others experienced one hurricane before or after. We only use the first hurricane occurrence in

any given region for the estimation (i.e., the treatment is “absorbing”)’ i.e., we filter out hurricanes

that occurred before 2001 or after 2019 and any hurricane between 2001 and 2019 in a location that

had previously experienced such a disaster. In doing so, we focus on the impact of ever receiving the

treatment during our sample period (Sun and Abraham, 2021).

We use a simple event study design to estimate the dynamic effects of both on- and off-cycle

hurricanes. Our main specification reads as

Yit = αi + γt +
∑
l

µl.1{t− Ei = l}+ ϵit, (1)

9At the national level, for example, both hurricanes Katrina and Sandy were sufficiently large to trigger amendments
to federal disaster emergency and preparation management, namely the Post-Katrina Emergency Management Reform
Act of 2006 and the Sandy Recovery Improvement Act of 2013.
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where Yit is the (log of the) outcome of interest in county i at year t, 1 is an indicator for having

ever been hit by an on- or off-cycle hurricane, and Ei is the year of the first on- or off-cycle hurricane

experienced in county i in the sample period. County fixed effects (αi) and year fixed effects (γt)

are also included in the regression, and standard errors are clustered at the county level. Following

Callaway and Sant’Anna (2021), in pre-treatment years the base year is the immediately preceding

year. Later, we show that our results remain quantitatively and statistically similar when controlling

for the hurricane’s intensity upon landfall, using larger sample periods and alternative estimators.

4.2 Main Results

Following the empirical literature on post-disaster efforts (e.g., Besley and Case, 1995; Besley and

Burgess, 2002; Eisensee and Strömberg, 2007; Healy and Malhotra, 2009) and on economic activity

sorting (e.g., Boustan et al., 2012; Hornbeck, 2012; Bernstein et al., 2021), we are primarily interested

in measuring how local public spending and the population react to on- and off-cycle hurricanes.

Local government’s post-disaster efforts. Measuring governmental output is complex as it is

essentially nonmarketable. To assign a dollar value to the provision of local public goods and services,

we thus rely on the BEA’s estimates of government output, aggregating governments’ spending to

produce and provide public assets and services at the county level.10 Note that the BEA definition

of government output is conservative as it assumes that the net return for general government fixed

assets is null.

The upper panel of Figure 2 presents the dynamic effects of hurricanes on such a county-level

measure of government output. In line with the literature on public responses to natural disasters

(Besley and Burgess, 2002; Eisensee and Strömberg, 2007; Healy and Malhotra, 2009), electoral cy-

cles generate strikingly different responses. Indeed, the provision of local public goods and services

increases sharply in the aftermath of an on-cycle hurricane compared to the rest of the U.S. and peaks

after four years at about +7.7%. After the fourth year, public goods provision steadily returns to

pre-treatment levels. In contrast, local public goods provision remains statistically unchanged when

counties are affected by an off-cycle hurricane. Overall, the corresponding average treatment effect

of on-cycle hurricanes on the treated (ATT) is +4.1% (p < 0.01), or $155 per capita (in 2001 dollar

10Since 2001, the BEA measures the purchases made by the federal, state, and local governments on inputs of labor,
intermediate goods and services, and investment expenditures. Upper governmental consumption expenditures and gross
investments are distributed to counties using various data sources on employment, GDP, net electricity generation data,
and wages and salaries. See the BEA—Chapter 9: Government Consumption Expenditures and Gross Investment for a
detailed description of the methodology.
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values–see Table A.3). In contrast, the ATT for counties hit by off-cycle hurricanes is not significantly

different from zero.

Population sorting. The bottom panel of Figure 2 presents the dynamic population response to a

hurricane, depending on whether the disaster occurred close (i.e., on-cycle) or far (i.e., off-cycle) from

Election Day. Our results document a sharp, significant, positive, and persistent population response

when hurricanes occur close to Election Day. In particular, the population grows by 4.6% seven years

after an on-cycle hurricane and 10.4% after 13 years compared to the rest of the country. The ATT

of on-cycle hurricanes on the population is about 4.7% (p < 0.01), which corresponds to around 6, 568

individuals for the average on-cycle county (see Table A.3). This effect is almost immediate: like local

public goods provision, the population grows in the second year after the on-cycle natural disaster. In

contrast, counties hit by off-cycle hurricanes do not display any population response.11

4.3 Internal and External Validity

As mentioned in Section 4.1, Appendix A.3.1 informs our main outcome results using alternative

comparison groups. Additionally, Appendix Figure A.4 shows that both the public good provision

and the population responses remain qualitatively similar when applying the estimators of Abadie

(2005) or Sun and Abraham (2021), holding the comparison group (never-treated) and comparison

year (the year before the shock) constant. Similarly, Appendix Figure A.5 shows that the public good

provision and the population responses remain unchanged when controlling for wind velocity upon

landfall.

We further explore the external validity of our results. First, we extend our period of analysis until

1969 and find that the population has increased dramatically in counties hit by on-cycle hurricanes

ever since (Figure A.6) at least the Stafford Act of 1988 (Figure A.9), indicating that our main result

is not the product of recent extreme weather events. Second, we use extreme wildfires as treatments

to ensure that our main findings are not due to a specific type of disaster (here, hurricanes).12 Figure

A.7 shows that the population significantly increases in counties hit by on-cycle wildfires as opposed to

11To better understand the spatial sorting pattern, we split the population stock into flows of those who stay (stayers),
migrants moving in (inflow), and migrants moving out (outflow) in Appendix A.2. To do so, we use IRS county-to-county
migration data, which tracks the number of exemptions filed by taxpayers at the county level.

12To do so, we overlap wildfires’ spatial extents between 1988 (i.e., the year of the Stafford Act) and 2019 from the
Interagency Fire Perimeter History dataset with land use information from 1987 (Sohl et al., 2016) and select wildfires
having burnt at least 100 hectares of 1987 urban lands. Note, however, that the occurrence and extent of a wildfire are
less exogenous. For instance, wildfires are often caused by criminal activity, and their extent may vary with the quality of
local public services. As a result, only a handful of wildfires could be qualified as catastrophic events during our sample
period (see Section 2).
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(a) On- vs. Off-Cycle Hurricane Effect on Local Public Goods Provision

(b) On- vs. Off-Cycle Hurricane Effect on Population

Figure 2: Main Results

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of public good and service provision (i.e., government output; see the
BEA’s definition) (Panel (a)) and the log of the population (Panel (b)), aggregated at the county level. The comparison
group includes the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regression model includes
county and year fixed effects. Standard errors are clustered at the county level.
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off-cycle wildfires. This pattern supports the idea that our main result is general and can be extended

to other types of catastrophic events and is not limited to hurricanes.

Nevertheless, it is unclear whether economic activity will systematically sort in exposed areas after

a disaster. As mentioned in Section 1, sorting responses hinge on both the exogenous disaster damage

and the endogenous private and public responses to the initial shock, irrespective of the electoral cycle.

Depending on the strength of these responses relative to the initial shock, natural disasters may or

may not trigger population sorting in exposed areas. To that extent, one should not expect similar

results in periods or areas where post-disaster intervention is not as electorally important or may be

limited. Hazards can prompt households to move away from danger, particularly in situations where

there is insufficient support after a disaster (e.g., Boustan et al., 2012; Hornbeck, 2012). However,

these effects might differ in modern contexts (e.g., Kocornik-Mina et al., 2020; Tellman et al., 2021;

Balboni, 2019; Fried, 2021; Magontier and Martinez Mazza, 2023) where government intervention is

more likely.

4.4 Mechanisms

Having established that population and local public goods provision increase significantly after an

on-cycle hurricane, we want to document the channels linking these two results.

Electoral motives. One possibility is that these responses are affected by a simultaneous apolitical

mechanism (Noy and Nualsri, 2011). However, in our design, the electoral timing (i.e., every other

year) tends to ensure it is not the case. An extensive literature on political business cycles (e.g., Rogoff,

1990; Rogoff and Sibert, 1988; Alesina et al., 1993; Persson and Tabellini, 2012) points out that the

impact of regular electoral cycles on real variables such as GDP or unemployment are unlikely. In our

case, such business cycles, which could distort hurricanes’ impact on economic activity sorting (e.g.,

Hallegatte and Ghil, 2008), are orthogonal to federal elections.13 Instead, the literature has shown that

politicians may strategically use short-term budgetary instruments such as fiscal transfers for signaling

purposes before an election (e.g., Alesina, 1988; Foremny and Riedel, 2014). To ensure that population

sorting is indeed affected by electoral motives and not other concurrent non-electoral mechanisms, we

explore the treatment effects along alternative political dimensions. We categorize the counties into

politically aligned counties with the federal government in federal elections versus unaligned counties

(Figure A.8, upper left), counties that voted for democrats versus republicans in federal elections

13An exploration of the NBER Business Cycle Dating time series shows that economic expansions and contractions
do not correlate with the U.S. federal electoral cycle.
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(Figure A.8, upper right), and counties belonging to a swing state versus a non-swing state (Figure A.8,

bottom). The results show that after hurricanes, politically aligned counties, republican counties, and

counties in swing states are likely to experience population sorting. Respectively, politically unaligned

counties, democrat counties, and counties in non-swing states do not experience the population sorting

phenomenon described earlier. Note that these political dimensions cannot be treated as exogenous as

the timing of hurricanes relative to Election Day. However, they support our hypothesis that electoral

motives shape post-disaster reactions and the subsequent sorting patterns.

Additionally, Figure A.9 shows that this population effect is driven mainly by events after the

1988 Stafford Act (see Section 2), which gave the president increased discretionary power over post-

disaster policies, reinforcing the idea that federal electoral motives play a significant role. Finally,

we differentiate the hurricanes into major and minor hurricanes by exploiting the full wind field

distribution. The effect is particularly salient when we focus on the major hurricanes (i.e., category

3–5 hurricanes with wind velocity ≥ 50m/s, measured by the CLIMADA wind field model). Panel (a)

of Figure A.10 shows that significantly more public goods and services are provided in counties hit

by on-cycle hurricanes with higher wind speeds. Similarly, Panel (b) of Figure A.10 shows that only

major winds are likely to drive the sorting response, echoing that the DRF voted by federal authorities

primarily reacts to more catastrophic events.

Fiscal revenues redistribution. To examine how counties affected by on-cycle hurricanes finance

this significant increase in public goods provision, we collect information on local budgets from the

Census of Governments aggregated at the county level. Such increased spending is unlikely to be

financed by local authorities. Indeed, Appendix Figures A.11 and A.12 show that the impacts of on-

cycle hurricanes on local own-collected revenues and local debt are statistically insignificant despite

a short-lived positive response in own-collected revenues after an on-cycle hurricane. However, we

observe an economically and statistically significant rise in intergovernmental transfers to the counties

affected by on-cycle hurricanes.

Appendix Figure A.13 shows that this reaction is ignited immediately after the shock and peaks

at year three at almost +12.7% compared to counties not yet affected by an on-cycle hurricane.

This strong response quickly dissipates after the fifth year. Counties affected by off-cycle hurricanes

experience increased intergovernmental transfers but with much smaller magnitudes than the effects of

on-cycle hurricanes. This result, however, suggests that states and federal governments support local

administrations’ budgets after an off-cycle event but do not overcompensate for the disaster shock.
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Overall, the ATT of the on-cycle hurricanes is +4.3% (p < 0.01), or $45 per capita. In contrast, the

ATT of the off-cycle hurricanes remains not statistically significant.

To see if other accounting components are affected by the timing of hurricanes, we build on Piketty

et al. (2017) to generate county-level distributional accounts between 2001 and 2019. Appendix Section

B.2 details the methods and data used to compute aggregate spending and revenues at the local level.

This procedure of computing the total collected taxes before and total spending after redistribution for

each county in the United States allows us to calculate net transfer rates as the ratio of net spending

(i.e., total local expenditures net of total revenues collected locally) to local GDP. In this system,

the spending rate in the average county, a net recipient, is 16.59% higher than the local tax rate.

Appendix Figure B.7 illustrates the dynamic impacts of hurricanes on net transfers. On average,

on-cycle hurricanes cause an increase in net transfers by 3.12 percentage points (or $54 per capita),

representing 18.8% of the net transfers in the average county. In contrast, fiscal transfers do not

significantly respond to off-cycle hurricanes.

Local amenities and labor demand shocks. Essential post-disaster policy programs, e.g., the

FEMA Disaster Relief or Mitigation Programs, aim to help cover the costs of restoring basic infrastruc-

tures (Sylves, 2019). Amid the disaster’s course, further damages may occur due to access difficulties,

lack of drinkable water, or energy shortages. The construction and reparation of roads, bridges, and

highways, as well as reforming essential utility local distribution (i.e., water, gas, electricity), is there-

fore a priority to revive affected neighborhoods, all the more given the piling costs from delays (Olsen

and Porter, 2011; Pradhan and Arneson, 2021).

The surge in basic infrastructure restoration demand may affect population sorting in two ways.

First, these infrastructures are repaired and upgraded to sustain future damage. For instance, public

administrations might elevate roads and bury electrical lines, and the impact of on-cycle hurricanes

on immediate post-disaster FEMA grants to local administrations supports this claim. Appendix

A.5.3 shows that federal assistance can be twice as large when a hurricane is on cycle than when it

is off cycle. In line with these results, Appendix Figure A.15 provides further evidence supporting

the existence of an electoral cycle in the activity of the transportation and utility infrastructures

construction industries. The American Society of Civil Engineers gave an average D/D+ grade to U.S.

civil infrastructure systems between 1998 and 2013 (Grigg, 2015). Post-disaster support thus allows

local infrastructure restoration beyond pre-disaster quality, which might be outdated (Hornbeck and

Keniston, 2017). This support translates into durable improvements in neighborhoods’ quality of life,

20



higher relative attractiveness, and local multiplier effects.

At the same time, the higher post-disaster transfers after on-cycle disasters may not only lead

to a redevelopment of the local infrastructure, allowing local productivity and economic activity to

recover. Consistent with the Dutch disease hypothesis, they also shift labor from tradable to non-

tradable sectors (see, e.g., Allcott and Keniston, 2017; Bulte et al., 2018; Corden and Neary, 1982;

Rajan and Subramanian, 2011). Indeed, we observe a boom in the construction sector followed by a

contraction of the local economy four to five years after the on-cycle post-disaster efforts and a large

industrial recomposition toward service industries. Appendix Figure A.16 documents the existence

of the electoral cycle along these dimensions. In contrast, we do not see such changes after off-cycle

events.

Discussion. Overall, the redevelopment and investments in basic infrastructure, motivated by elec-

toral motives, generate durable improvements in the local quality of life and distort the local economy.

Both channels affect the relative attractiveness of locations and the spatial distribution of economic

activity across space. However, quantifying the relative importance of each channel in the data is a

complex task. For example, isolating higher-quality amenities from increased public spending would

be challenging given the ensuing endogenous population sorting and other general equilibrium effects.

The next section presents a dynamic spatial model with post-disaster policies whose structure allows

us to distill and quantify these channels’ exogenous parts. We discuss the relative importance of the

electoral cycle for local amenities and productivity in Section 6.4.

5 A Dynamic Spatial Model with Electorally-Motivated Policies

This section builds on our previous empirical findings that electoral-cycle-driven post-disaster policies

can distort location decisions. We aim to provide the most straightforward setup to analyze the role

of policies motivated by electoral prospects in the spatial distribution of economic activity. In doing

so, we embed electoral-cycle-driven public policies in a dynamic spatial equilibrium model.

Post-disaster policies affect the spatial distribution of economic activity in a way that requires

a dynamic framework that entails economic growth effects. Hence in building our dynamic spatial

model, we follow Desmet et al. (2018) and Desmet et al. (2021) but make the following necessary

amendments. Governments in every region provide local public services (among other things, seawalls,

water reservoirs, elevated roads, safe schools, and general safety). A fiscal transfer scheme reallocates

resources across jurisdictions, as in Henkel et al. (2021). Local governments can adjust their post-

21



disaster efforts (i.e., the transformation rate of public spending into durable public goods and amenities

valued by workers) given the size of electoral-cycle-driven post-disaster transfers.

Moreover, we allow for the possibility of post-disaster efforts distorting the local economy, which

could reduce long-term overall growth and welfare. We consider an economy consisting of r ∈ S

regions with land density H(r) for each region r. There is a mass L̄ of homogeneous workers who are

(imperfectly) mobile across regions. The initial population size in location r is given by H(r)L̄0(r).

Preferences. An infinitely lived representative household i who resides in location r in period t

has lived in locations r̄− = (r0, ..., rt−1) in the previous periods. The household derives utility from

consumption of a private good ct(r) and public services gt(r) according to the following Cobb-Douglas

preferences, where 0 < γ < 1:

uit(r̄−, r) =

[(
gt(r)

H(r)L̄t(r)η

)γ

· ct(r)1−γ

]
at(r)ϵ

i
t(r)

t∏
s=1

m(rs, rs−1)
−1. (2)

The parameter η ∈ [0; 1] governs the degree of rivalry in public services in location r, with η = 0

capturing the case of a pure local public good and η = 1 of fully rival per capita transfers per unit of

land. Agents discount the future at rate β < 1, and so the utility of household i in the first period

is given by
∑

t β
tuit(r̄

i
t−, r

i
t), where rit denotes the location decision at t, r̄it− denotes the history of

locations before t, and ri0 is given.

The local amenity term at(r) = āt(r)L̄t(r)
−λ contains two parts. The first part is a fundamen-

tal amenity term (āt(r)) that includes public infrastructure build-up in the past and environmental

amenities like warm weather, clean air, and water. Moreover, it entails the rate at which the govern-

ment transforms public spending into utility valued by households (similar to Fajgelbaum et al., 2019).

The second part is endogenous and reacts negatively to population per unit of land at r in period t

(L̄t(r)
−λ), where λ ≥ 0 governs the strength of that endogenous dispersion force. Local disasters and

the electoral cycle affect each location’s fundamental amenity level through the function Λa
t (r).

āt(r) = (1 + Λa
t (r))āt−1(r). (3)

The size of Λa
t (r) depends on the local disaster probability and the electoral cycle. It defines the

percentage change of āt(r) in response to a disaster and the accompanying post-disaster efforts across

the electoral cycle. If a natural disaster hits a region r at period t (1t(r) = 1), the rate at which

the local government transforms public funds into amenities valued by workers is changed by Λa
t (r).
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When there is no disaster (1t(r) = 0), the level of fundamental amenity remains unchanged. Then, it

is given by āt(r) = āt−1(r).

Post-disaster efforts vary across the electoral cycle and could affect the fundamental amenities

differently. φa represents the additional effect on the transformation rate during an on-cycle year,

It = 1, compared to an off-cycle year λ̄a.

Λa
t (r) = (λ̄a + φa · It) · 1t(r). (4)

Our specification also accounts for idiosyncratic location preferences ϵit(r) and moving costsm(rs, rs−1)

from having resided in different places in the past. Idiosyncratic taste shocks are independent and

identically distributed across households, locations, and time according to a Fréchet distribution with

shape parameter 1/Ω and scale parameter 1. A greater value of Ω implies more variety in agents’

tastes across locations, acting as an additional dispersion force. We follow Desmet et al. (2018) in

simplifying the dynamic mobility decisions of the representative households to a sequence of static

decisions.14

A household derives income from net-of-tax (tt(r)) labor income (1−tt(r))wt(r) and from the local

ownership of land Rt(r)/L̄t(r). Economic agents cannot write debt contracts with each other.

The fraction of households living at r at time t is given by15

H(r)L̄t(r)∫
S H(u)L̄t(u)du

=
ut(r)

1/Ωm2(r)
−1/Ω∫

S ut(u)1/Ωm2(u)−1/Ωdu
. (5)

Production technologies. The specification of the production technology closely follows Desmet

et al. (2018), who develop and discuss all its dynamic features. In what follows, we rely on their

formal derivations and depiction of the optimization problems. We add, however, the term Λτ
t (r),

which incorporates the net effect of natural disaster and post-disaster efforts on local productivity. In

every region, r, a continuum of firms produces a unique variety ω of a differentiated intermediate good

under perfect competition using a constant-returns-to-scale technology in land and labor. Output per

14We assume that the mobility cost of moving from r to s is a function of an origin-specific cost term, m1(r), and a
destination-specific cost term, m2(s). This means that m(r, s) = m1(r)m2(s) with, m(r, r) = 1 for all r, s ∈ S such that
m2(r) = m1(r)

−1. The intuition is that the representative household only pays the permanent utility flow cost of moving
to a specific location while residing there. Once it moves away, the household gets compensated by a permanent utility
flow benefit, which is inversely proportional to the initial cost of moving there. In other words, migration decisions are
reversible, and therefore the location choice of households only depends on current variables and not on past or future
ones.

15See Desmet et al. (2018) for a complete derivation.
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unit of land of variety, ω, is given by

qω,t(r) = ϕω,t(r)
γ1zω,t(r)Lω,t(r)

µ, (6)

where Lω,t(r) denotes the amount of labor per unit of land. Since land is a fixed factor with share

1− µ, agglomerating labor in a location yields decreasing returns, which acts as a congestion force.

Each firm’s productivity is determined by its innovation decision, ϕω,t(r) ≥ 1, and an idiosyncratic

location-variety-specific productivity shifter, zω,t(r). Firms can invest in innovation by employing

νϕω,t(r)
ξ additional units of labor per unit of land, where ξ > γ1/[1−µ]. The location-variety-specific

innovation decision creates a local advantage to scale. As captured by γ1/ξ, it is an agglomeration

force whose strength increases along with the returns to innovation.

The exogenous productivity shifter is the realization of a random variable that is independent and

identically distributed across varieties and time according to a Fréchet distribution with cumulative

distribution function F (z, r) = e−Tt(r)z−θ
. The scale parameter Tt(r) governs the level of productivity

in a location and is affected by agglomeration externalities due to high population density and past

endogenous innovations. We let Tt(r) = τt(r)L̄t(r)
α, where τt(r) represents a location-specific pro-

ductivity term and the positive impact of L̄t(r) on Tt(r) captures additional agglomeration economies

such as knowledge spillovers. The shape parameter θ > 0 governs the dispersion in productivity draws

across locations. A broader dispersion in draws across locations increases the effect of population

density on average productivity such that the strength of this agglomeration force is increasing in

α/θ.

In turn, fundamental productivity, τt(r), is determined by the net impact of local disasters and

post-disaster efforts as well as an endogenous dynamic process given by

τt(r) = (1 + Λτ
t (r))

(
ϕt−1(r)

θγ1

[∫
S
η(r, s)τt−1(s)ds

]1−γ2

τt−1(r)
γ2

)
. (7)

Local disasters and post-disaster efforts directly affect each location’s fundamental productivity

term through the impact function Λτ
t (r). Value 1t(r) = 1 indicates if a natural disaster hits a region r

at period t, and 1t(r) = 0 indicates a storm does not hit the region. The term ϕt−1(r)
θγ1 represents the

shift in the local distribution of shocks that results from the last periods’ innovation decisions of firms,

which are assumed to now constitute the local technology. The individual contemporaneous effect of

innovation directly affects the production function in (6). The term
[∫

S η(r, s)τt−1(s)ds
]1−γ2 τt−1(r)

γ2

denotes the level of past productivity that firms build on, with
∫
S η(r, s) = 1. It also comprises

24



the locations’ productivity level τt−1(r) and technology diffusion from other locations. The function

η(r, s) denotes the spatial decay in the strength of technology diffusion. Note that η(r, s) also governs

the spatial distribution of productivity shocks in response to natural disasters. That is, the dynamic

evolution of a location’s technology level is not only shifted up by past innovations but also affected

by the impact of natural disasters in all other locations if γ2 < 1.

Land markets are competitive. A continuum of potential entrants competes in prices (à la

Bertrand); i.e., all firms bid for land to enter the market. Since there is a continuum of potential

entrants, all firms bid until the winning firm makes zero profits net of the fixed innovation costs.

Thus, in this economy, the solution to the dynamic innovation problem is to choose the level of in-

novation that maximizes profits (or, equivalently, land bids) over time. Future firms’ profits are zero

because all future gains of today’s innovations will accrue to the fixed factor land reflected by the local

land price, Rt(r). The firms’ innovation decisions remain unaffected by the effect of future produc-

tivity gains of current innovations via (7). Again, this implies that the firm’s optimization problem

reduces simply to a static problem. In sum, individual firms in location r take input costs as given

and maximize current profits per unit of land by choosing the amount of labor per unit of land for

production and innovation:

max
Lω,t(r),ϕω,t(r)

pω,t(r, r)ϕω,t(r)
γ1zω,t(r)Lω,t(r)

µ − wt(r)Lω,t(r)− wt(r)νϕω,t(r)
ξ −Rt(r), (8)

where pω,t(r, r) is the price charged by the firm of a good sold at r.

Prices and export shares. Intermediate goods markets are competitive, so firms sell goods at

marginal cost after accounting for transport costs. Let ζ(s, r) ≥ 1 denote the iceberg trade cost of

transporting a good from r to s. Then, the price of an intermediate good ω produced at r and sold

at s is given by

pω,t(s, r) =
ζ(s, r)mct(r)

zω,t(r)
, (9)

where mct(r) ≡ [1/µ]µ[νξ/γ1]
1−µ[γ1Rt(r)/wt(r)ν(ξ(1−µ)−γ1)]

(1−µ)−(γ1/ξ)wt(r) denotes the marginal

input cost at location r.

The probability density that an intermediate good produced in r is bought in s is given by

πt(s, r) =
Tt(r) [mct(r)ζ(r, s)]

−θ∫
S Tt(u) [mct(u)ζ(u, s)]

−θ du
for all r, s ∈ S. (10)

A final good Qt(r) is assembled from the continuum of intermediates according to the following
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constant elasticity of substitution aggregator:

Qt(r) =

[∫
S
qt(r, s)

ρdr

] 1
ρ

. (11)

Here, qt(r, s) denotes the quantity of the variety produced in location r and used for assembly in

location s, and 1/[1−ρ] represents the elasticity of substitution between intermediates with 0 < ρ < 1.

Final goods are not traded across regions, and assembly has no extra costs. This final good Qt(r)

can either be used directly for private consumption ct(r) or by local governments to provide public

services gt(r). Thus, we have Qt(r) = H(r)L̄t(r)ct(r) + gt(r).

As a result, the final good’s price in place s at time t is determined by the average price of the

various goods assembled in location r:

Pt(s) = p̄χt(s)
− 1

θ , (12)

with χt(s) =
∫
S Tt(u) [mct(u)ζ(u, s)]

−θ du and p̄ =
[
Γ
(

−ρ
(1−ρ)θ + 1

)]− 1−ρ
ρ
.

Government. In describing the public sector in this economy, we closely follow Henkel et al. (2021).

Labor income is taxed at rate tt(r), which generates an overall tax revenue equal to tt(r)wt(r)H(r)L̄t(r)

in region r at time t. The federal government budget constraint is thus given by
∫
S tt(s)wt(s)H(s)L̄t(s)ds.

In every period t, the federal government redistributes overall tax revenues to local governments at

the rate θt(r). The transfer rate relative to local aggregate labor income is positive (θt(r) > 0) for

recipients and negative (θt(r) < 0) for donor regions.

We keep the specification of the public sector as simple as possible. However, it is flexible enough to

take the model to the data. A few comments are in order about our setup. We assume the government

can commit to a tax policy sequence at time zero and cannot issue bonds to borrow money from the

future. Our model abstracts from horizontal tax competition and national public goods. However,

note that the amenity term consumed by households implicitly captures any national public goods

provided by the federal government. We abstract from progressive tax schedules and dead-weight

losses of income taxation. However, although households supply labor inelastically, we will see later

that they respond to regional differences in tax and transfer rates through migration. Therefore, local

governments face a mobile tax base since households choose their locations endogenously.
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Post-disaster policy and the electoral cycle. Motivated by the empirical findings of the previous

section, we introduce a relationship between fiscal transfers and natural disasters in our spatial general

equilibrium model. Letting θt(r) denote the transfer rate, the response of the federal government to

natural disasters in setting local transfer rates reads as follows:

θt(r) =
(
1 + Λθ

t (r)
)
θt−1(r). (13)

A natural disaster in region r raises its weight for the upper governmental layers in channeling public

funds to this region. The transfer rate of the previous period θt−1(r) is adjusted by Λθ
t (r) if a natural

disaster hits region r at period t, 1t(r) = 1. More importantly, transfer rates depend on the electoral

cycle:

Λθ
t (r) = (λ̄θ + φθ · It) · 1t(r). (14)

When the disaster occurs within an election year, It = 1, the transfer rates could react differently

than during off-cycle year. φθ > 0 governs the size of this political cycle effect.

The local governments use the available public funds to provide a sequence of local public services

gt(r). Without any political-cycle-driven transfers, the level of local public goods reads as gt(r) =[
tt(r) + (1 + λ̄θ · 1t(r))θt−1(r)

]
wt(r)Ht(r)L̄t(r)/Pt(r). Given the political cycle effect, however, the

effective budget that is available for local public goods provision in region r during an on-cycle year

is thus given by

gt(r) =
[
tt(r) + (1 + (λ̄θ + φθ · It) · 1t(r))θt−1(r)

]
wt(r)H(r)L̄t(r)/Pt(r). (15)

Competitive equilibrium. The following conditions define a dynamic competitive equilibrium in

this economy:

1. Labor market clearing. ∫
S
H(r)L̄t(r)dr = L̄. (16)

2. Land market clearing. Land is assigned to the highest bidder such that for all r ∈ S:

Rt(r) =

[
ξ − µξ − γ1
µξ + γ1

]
wt(r)L̄t(r). (17)

3. Goods market clearing. Total labor income in region r, wt(r)H(r)L̄t(r), must equal region
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r’s total sales to all locations s ∈ S:

wt(r)H(r)L̄t(r) =

∫
S
Xt(s, r)ds for all r ∈ S, (18)

where Xt(s, r) = πt(s, r)[(1 + θt(s))wt(s)H(s)L̄t(s)]ds includes government transfers across re-

gions.16

4. Balanced public budget. The total amount of transfers paid must equal the total amount

received such that ∫
S
θt(s)wt(s)H(s)L̄t(s)ds = 0. (19)

Moreover, each local government spends its entire budget on local public goods:

[tt(r) + θt(r)]wt(r)H(r)L̄t(r) = Pt(r)gt(r).

5. Spatial sorting. Given migration costs and their idiosyncratic preferences, households choose

where to live, so (5) holds for all r ∈ S.

6. Utility. The utility associated with net real income and amenities in location r is given by

ut(r) =at(r)

(
(tt(r) + θt(r))wt(r)L̄t(r)

L̄t(r)ηPt(r)

)γ (
(1− tt(r))wt(r) +Rt(r)/L̄t(r)

Pt(r)

)1−γ

(20)

=āt(r)L̄t(r)
−λ+γ(1−η)wt(r)

Pt(r)
Θt(r) for all r ∈ S,

where Θt(r) ≡
[
(tt(r) + θt(r))

γ
(

ξ
µξ+γ1

− tt(r)
)1−γ

]
, the price index is given by (12), and land

markets are in equilibrium.

7. Dynamic evolution of technology, amenity levels, and transfer rates. Technology

evolves according to (7) and amenity according to (3), and transfer rates evolve according to

(13) for all r ∈ S.

Substituting utility (20), (12), and bilateral exports probabilities (10) into the goods market clear-

16Note that net government transfers imply trade imbalances in equilibrium. Total imports must equal local
labor income plus total net transfers, so (1 + θt(r))wt(r)H(r)L̄t(r) =

∫
S
Xt(r, s)ds. Comparing this expression

with (18), we observe that the difference between exports and imports is given by −(θt(r))wt(r)H(r)L̄t(r), while∫
S
θt(s)wt(r)H(r)L̄t(r)ds = 0.
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ing condition (18), we obtain

wt(r)
1+θH(r)L̄t(r)

1−α+(1−µ− γ1
ξ
)θ

=κ1

∫
S
ζ(r, s)−θτt(r)

[
āt(s)

ut(s)

]θ
Θt(s)

θ(1 + θt(s)) (21)

wt(s)
1+θH(s)L̄t(s)

1−[λ−γ(1−η)]θds,

where

κ1 =

[
µξ + γ1

ξ

]−[
µ−γ+

γ1
ξ

]
θ

µµθ

[
ξν

γ1

]− γ1θ
ξ

p̄−θ.

Second, combining (20) and (12) allows us to rewrite the price index equation as follows:

L̄t(r)
[λ−γ(1−η)]θwt(r)

−θ =κ1Θt(r)
θ

[
āt(r)

ut(r)

]θ
(22)∫

S
τt(s)ζ(s, r)

−θwt(s)
−θL̄t(s)

α−(1−µ− γ1
ξ
)θ
ds.

Conditional on τt(·), āt(·), L̄t−1(·), ζ(·, ·), m(·, ·), H(·), tt(·), θt(·), Λτ
t (·), Λa

t (·), Λθ
t (·), and given

parameter values, the system (21) and (22) together with (5) could be solved for the equilibrium

wages, population density, and utility for any t and all r ∈ S. τt(·) comes directly from (7), L̄t−1(·),

at(·) comes from (3), and θt(·) comes from (13). Appendix B.1 presents all proofs and derivations.

Desmet et al. (2018) show that λ + (1 − µ) + Ω ≥ α
θ + γ1

ξ is a sufficient condition to ensure the

existence and uniqueness of a stable equilibrium in their model. However, equilibria may also exist

if that condition is not satisfied. In our framework with local public goods and fiscal transfers, the

respective sufficient condition reads as follows:

Condition 1: λ+ (1− µ) + Ω ≥ α
θ + γ1

ξ + γ(1− η).

In words, the static congestion forces given by (λ; (1− µ); Ω) are at least as strong as the sum of

the static agglomeration forces (α/θ; γ1/ξ) and the sharing of public facilities (γ(1− η)). Notice that

the net static agglomeration spillover is then negative, α/θ + γ1/ξ + γ(1− η)− λ− (1− µ)− Ω ≤ 0,

so that an inflow of population into region r reduces utility ut(·), ceteris paribus.

Balanced growth path. The spatial distribution of employment is stable along a balanced growth

path (BGP), and the economic growth rate is equal across all areas. Following the steps in Desmet

et al. (2018), we can show that a BGP exists if

Condition 2: λ+ (1− µ) + Ω ≥ α
θ + γ1

ξ + γ(1− η) + γ1/([1− γ2]ξ).

Intertemporal spillovers from previous innovations ensure that the economy does not stagnate in

the long run. High-density places that have been innovative in the past are still productive locations
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nowadays. These areas attract more labor and expand their market, making them ideal locations

to innovate today. The influence of past productivity on the rest of the economy in establishing a

location’s productivity guarantees that this dynamic agglomeration effect does not lead the economy

to concentrate in one area over time. The additional term γ1/([1− γ2]ξ) represents this dynamic part

of agglomeration economies.

6 Quantification: Post-Disaster Policies in the United States

To bring our model to the data, we consider the post-disaster policies in the United States described

in Section 2. As for the empirical analysis, we operate at the county level. Our baseline year is

2001. To quantify the model, we need values for all the economy-wide parameters. Further, we

require location-specific values for initial fundamental amenity and productivity levels, migration, and

bilateral transport costs. We also need to estimate the impact of natural disasters and post-disaster

efforts on amenities, productivity, tax, and transfer rates. We choose baseline parameter values by

relating to those in the existing literature and borrow the remaining parameter estimates from Desmet

et al. (2018). Table 1 lists the parameters used in our model quantification. Appendix Section B.3.1

provides sensitivity checks around critical parameters of the model.

6.1 Tax and Transfer Rates

To calculate local tax rates tt(·) and local transfer rates θt(·), we use data from the Government

Finance Database (Pierson et al., 2015), from the BEA, the White House Historical Tables, and the

Federal Reserve Bank of St. Louis FRED. We break down all tax revenues and expenditures to the

county level and normalize them with these locations’ GDPs. Appendix Section B provides a more

detailed description of the data sources we use and our calculation steps.

Panel (a) of Figure 3 depicts the transfer rates (i.e., the ratio of net spending—total local expen-

ditures net of total revenues collected locally—to local GDP) of each U.S. county in 2001. It is worth

mentioning that there is no specific scheme to equalize fiscal capacities across jurisdictions in the

United States. Thus, any differences between local expenditures and tax revenues come from tax poli-

cies or specific (mandatory, discretionary, and supplemental) spending programs of higher government

layers. For example, the federal government collects more taxes from high-income than low-income

states via the federal income tax but spends more on social security, Medicare, and other programs

in low-income than in high-income places. Hence, transfer rates are more likely to be negative (i.e.,
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Table 1: Parameter Values

Preferences

β = 0.965 Discount factor for present values Desmet et al. (2018)
λ = 0.399 Amenity congestion w.r.t. local population Weighted avg. expenditure share on housing from BLS

(c.f. isomorphism discussed in Allen and Arkolakis (2014))
Ω = 0.5 Location taste heterogeneity parameter in Frechet distribution Monte et al. (2018)
γ = 0.417 Cobb-Douglas preferences weight on public good Cross-county mean of the counties’ tax revenue to GDP ratio
η = 0.405 Degree of rivalry in public services Cross-county mean of the counties’ transfers to individuals

to total government expenditures ratio

Production

α = 0.06 Elasticity of productivity w.r.t. local population Desmet et al. (2018)
γ1 = 0.319 Elasticity of productivity in t+ 1 w.r.t. innovation in t Desmet et al. (2018)
γ2 = 0.99246 Elasticity of productivity in t+ 1 w.r.t. productivity in t Desmet et al. (2018)
η(r, s) = 1 Parameter driving scale of technology diffusion Desmet et al. (2018)
µ = 0.8 Labor share in production Desmet et al. (2018)
ν = 0.15 Intercept parameter in innovation cost function Desmet et al. (2018)
ξ = 125 Elasticity of innovation costs w.r.t. innovation Desmet and Rossi-Hansberg (2015)
σ = 4 Elasticity of substitution (c.f. Bernard et al. (2003): 3; Allen and Arkolakis (2014): 9)
θ = 6.5 Trade elasticity Desmet et al. (2018) (c.f. Eaton and Kortum (2002): 8.3;

Simonovska and Waugh (2014): 4.6)

Impact Function

λτ = 0.0000 Semi-elasticity of productivity w.r.t. disaster probability Estimated
λā = 0.0000 Semi-elasticity of amenities w.r.t. disaster probability Estimated
λθ = 0.0000 Semi-elasticity of transfer rate w.r.t. disaster probability Estimated
λt = 0.0000 Semi-elasticity of tax rate w.r.t. disaster probability Estimated

Impact of Electoral Cycle

φτ = −0.3773 Impact of electoral cycle on productivity Estimated
φθ = 0.0312 Impact of electoral cycle on transfer rate Estimated
φa = 0.0837 Impact of electoral cycle on amenities Estimated
φt = 0.0000 Impact of electoral cycle on tax rates Estimated
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donating counties, closer to the first decile in Figure 3) in high-income counties (e.g., in New England,

Southern Florida, the California coast, or south of the Michigan Lake), while transfer rates are more

likely to be positive (i.e., receiving counties, closer to the tenth decile in Figure 3) in low-income coun-

ties (e.g., in the Southern United States, along the Appalachians, and states like Oregon, Montana,

and Nebraska).

6.2 Migration Costs

We recover m2(·) (i.e., the time-invariant, exogenous migration costs) from the time-invariant origin-

destination fixed effects on migration flows using the IRS county-to-county migration data for the

years 1990–2018. We aim to capture the average first-nature and long-run historical characteristics

affecting bilateral movement between counties over this period. We find that the impact of these

fixed characteristics on migration inflows correlates highly with their impact on migration outflows,

supporting the assumption of symmetric mobility costs (Desmet et al., 2018). Appendix Section B.2

provides a more detailed description of the data analysis.

Panel (b) of Figure 3 plots our recovered migration costs. Populous counties at the coast display

the lowest migration costs (i.e., closer to the first decile in Panel (b) of Figure 3), whereas inland, rural

counties bear high migration costs. A closer exploration of this geographic distribution indicates that

even seemingly isolated counties with high migration costs (e.g., Alpine County, CA, or Wahkiakum

County, WA) tend to exhibit harsh topographic features such as mountain ranges. Appendix Section

B.2 further shows that, as expected, these figures negatively correlate with net in-migration rates since

1950 as measured by Winkler et al. (2013).

6.3 Amenities, Productivities, and Utility Levels

Next, we recover fundamental productivities, τt(r), amenities, āt(r), and utility levels ut(r), for every

county from our general equilibrium model given our parameter values, and calculations for trade and

migration costs. By directly using our m2(r) estimates from the IRS migration patterns, we can tell

āt(r) apart from ut(r) given the structure of the model (in particular, equation (5)). Specifically, we

plug in our calculations of trade costs ζ(s, r), data on land H(r), tax rates tt(r), transfer rates (θt(r)),

and migration costs m2(r) as well as population Lt(r) and wages wt(r) into (21), (22), and (5) to solve

for āt(r), τt(r), and ut(r) for each year between 2001 and 2019.

Figure 4 plots the spatial distribution of amenities (Panel (a)) and productivities (Panel (b)) in

2001. Panel (a) shows that the amenity level is higher in Florida, New England, on the West Coast,
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(a) Transfer Rates

(b) Estimated Migration Costs

Figure 3: Transfer Rates and Estimated Migration Costs

Notes: This figure plots the transfer rates, θ, for our baseline year 2001 (Panel (a)) and the migration costs, m2(r),
(Panel (b)). The warm colors indicate higher deciles and the blue shadings indicate lower decile counties.
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and generally in large urban hubs and is low in some remote areas of the Rocky Mountains or the

Great Plains. Panel (b) shows that productivity is higher in California, Washington, New England,

and shoreline, urbanized counties in general.17

6.4 Impact of Natural Disasters and Election Cycle

We identify the causal effect of natural disasters and the electoral cycle on amenities, productivity,

tax rates, and transfer rates using the following empirical specification:

yt(r) = α(r) + γt +
(
λ̄y + φy · It

)
· 1t(r) + ϵt(r), (23)

where yt(r) ∈ {log āt(r), log τt(r), θt(r), tt(r)} are the logarithm of fundamental amenities, the loga-

rithm of fundamental productivities, the level of transfer rates, and the level of tax rates. 1t(r) is

an indicator function for location r having been hit for the first time during our sample period by

a natural disaster in period t. When the disaster occurs within an election year, It = 1. Finally,

α(r) and γt are county and year fixed effects, respectively, and standard errors are clustered at the

county level. As in equation (1), we use Callaway and Sant’Anna (2021) estimators to account for the

staggered nature of our treatment.

Note that in our model, exogenous amenities, āt(r), and transfer and tax rates, {θt(r), tt(r)}, re-

main constant at exogenous previous periods levels except if they are shocked by a natural disaster.

However, fundamental productivity τt(r) is the product of two terms: an exogenous part, τt−1(r)
γ2 ,

and an endogenous part, ϕt−1(r)
θγ1
[∫

S η(r, s)τt−1(s)ds
]1−γ2 (see equation (7)). Because the latter is

endogenous to τt−1, explicitly controlling for ϕt−1(r)
θγ1
[∫

S η(r, s)τt−1(s)ds
]1−γ2 would bias the impact

of natural disasters on productivity. We, therefore, control for the lagged exogenous components of

the model, {log āt−1(r), θt−1(r), tt−1(r)}, to avoid these issues of over-controlling while identifying the

impact of natural disasters on τt(r). In doing so, we isolate the effect of natural disasters on pro-

ductivity, either directly—through its exogenous component—or indirectly—through its endogenous

component. We then quantify the impact functions by Λy
t (r) = (λ̄y + φy · It) · 1t(r).

Our estimates in Appendix Table 1 and Appendix Figure B.7 show that amenities and transfer

rates increase by an average of 8.37% and 3.12 percentage points after an on-cycle hurricane. These

positive shifts incentivize population sorting into regions hit by on-cycle disasters. This effect is,

however, toned down by a substantial productivity decline: on average, −37.73%, which is consistent

17Appendix Figure B.6 shows that our recovered utility levels positively correlate with a measure of subjective well-
being (ρ = 0.2819) as in Desmet et al. (2018, 2021) and with the Local Human Development Index (ρ = 0.2325) as in
Cruz and Rossi-Hansberg (2021).
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(a) Fundamental Amenities

(b) Fundamental Productivities

Figure 4: Estimated Fundamental Amenities and Productivities

Notes: This figure plots the fundamental amenities combined with the rate of transformation (Panel (a)) and produc-
tivities (Panel (b)) for our baseline parameter values and baseline year 2001. The warm colors indicate higher deciles
and the blue shadings indicate lower decile counties.
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with the local GDP per capita losses observed in the data after an on-cycle disaster. Except for

tax rates, all ATTs are statistically significant (with p < 0.01) in the on-cycle case. However, while

we cannot rule out the absence of response in the off-cycle case, we cannot leverage statistically

significant ones either. The transfer rate would increase by an average of 0.89 percentage points and

amenities by 1.03%, and productivities would decline by 9.5%, but none of these responses would

differ significantly from zero. Finally, in either case, the tax rate responses are insignificant from a

statistical and economic point of view: +0.0055 percentage points after an off-cycle hurricane and 0.05

percentage points after an on-cycle one. Together, these results mean that electoral motives originally

trigger any statistically significant response of the fundamentals to the hurricane.

Discussion. In our model, the observed population sorting pattern after on-cycle disasters cannot

be explained solely by higher post-disaster transfers. Hence, higher fundamental amenities work

as a compensating differential to rationalize the assumption of a spatial equilibrium jointly with the

population sorting pattern in the data. The structure of our model allows us to specifically disentangle

the impact of natural disasters on quality of life, productivity, and government spending, respectively.

Our model’s increasing local amenity findings echo the channels discussed in Section 4.4 of the

empirical results. Overall, our plausibility checks (see Figure A.15) revealed that the transformed

amenity values represent improvements in the local quality of life. Local communities, supported by the

federal and state governments, use post-disaster transfers to build higher-quality public infrastructure

and housing after an on-cycle disaster, which translates into higher local amenity levels.

Our model also mirrors the local economy distortions documented in Section 4.4. In intervening

in the local economy, the government might provide higher amenity levels and distort regional pro-

ductivity. We show how more elevated post-disaster subsidies close to Election Day crowd out the

manufacturing industry, lower productivity, and reduce economic growth, consistent with the Dutch

disease hypothesis (e.g., Allcott and Keniston, 2017; Bulte et al., 2018; Corden and Neary, 1982; Rajan

and Subramanian, 2011).

6.5 In-Sample Performance

To assess the model’s in-sample performance, we simulate population and wage dynamics between

2001 and 2019. We use the reported parameters of Table 1, our estimated trade and migration

costs, the recovered fundamentals, 2001 local tax, and transfer rates to solve for the equilibrium

wages, population, and utility. We update fundamental amenities, productivity, and transfer rates
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according to our estimated impact functions. Appendix Figure B.8 presents the model performance

in explaining the population and wage dynamics in response to natural disasters between 2001 and

2019. The model performs well in reproducing the population and wage average dynamics using

our model-implied impact functions. Population increases and wages decline in response to on-cycle

disasters. The average treatment effects of on- and off-cycle hurricanes on the population and wages

predicted by our model are not statistically different from those leveraged in the data. We also present

the correlation between observed population and wage levels and their simulated counterparts, which

shows that the model reproduces the spatial distributions of population and wages well. Specifically,

the correlation between population levels in the data and model is 0.997, and the correlation between

simulated and actual wages is 0.869.

7 Counterfactual Analysis

Next, we assess the importance of electoral-cycle-driven post-disaster policies for the spatial distribu-

tion of economic activity and the aggregate economy. To do so, we first simulate our baseline scenario

under the current electoral-cycle-driven post-disaster policy. Then, we simulate a scenario where we

remove the impact of the electoral cycle on the post-disaster economy.

Using historical and synthetic storm tracks, we start from the initial spatial equilibrium in the

baseline year 2001 and simulate the model forward for 80 years. We use only an 80-year simulation

period mainly for two reasons. First, determining the far future fundamental amenity distribution

requires understanding the long-run evolution of anthropogenic adaptation to climate change conse-

quences. Making such an attempt is far beyond the scope of this paper, and not accounting for this

critique would weaken the potential of our results. Second, it is still being determined whether the

political and electoral institutions will remain as of today in the far future and whether electoral mo-

tives will be unchanged. While difficult to amend, these latter are, of course, subject to constitutional

changes.

Considering these two reasons, we maintain current climate conditions unchanged and avoid model-

ing climate change scenarios as determined by the various Intergovernmental Panel on Climate Change

reports. Indeed, it is likely that neither the frequency nor the intensity of future major hurricanes will

drastically change in the North Atlantic basin for at least 50 to 100 years (Emanuel, 2011; Knutson

et al., 2020). Of course, other disastrous consequences of climate change will emerge in the upcoming

decades. However, accounting for multiple disaster types in our simulations would require a deep
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understanding of how each hazard would dynamically evolve at the local level, even more so under

several unified, hypothetical climate change scenarios. Beyond the technical challenge, we have yet to

be aware of any attempt made in the economic or climate science literature.

To inform our model, we generate synthetic hurricane paths using the STORM dataset (Bloe-

mendaal et al., 2020). Appendix Figure B.4 shows examples of the distribution of on- and off-cycle

hurricanes in this dataset. Again, storms are geographically balanced. As in our empirical analysis,

we use the radius of maximum winds and the first landfall within a 20-year time window to identify

treated counties, as shown in Appendix Figure B.5.18

We compare our baseline scenario, which features post-disaster grants, amenities, and produc-

tivity levels that vary across the electoral cycle, to a counterfactual scenario without these impacts.

More specifically, in our counterfactual scenario, the impact of natural disasters on fiscal transfers,

amenities, and productivity is independent of the electoral cycle. In other words, we set φy = 0

and impose Λy
t (r) = λ̄y · 1t(r) for any t and for all r ∈ S in equations (3), (13), and (7), where

y ∈ {āt(r), θt(r), τt(r)}. Further, we assume fixed values for the exogenous parameters. We maintain

the same values of the local tax rates tt(r), the trade costs ζ(s, r), and the migration costs m2(r) as

in the initial equilibrium in 2001. Using the system (21) and (22) together with (5), we then solve for

the new (counterfactual) equilibrium wages, population density, and utility for any t and all r ∈ S.

We update τt(·) according to (7), at(·) according to (3), and θt(·) according to (13).

In Appendix B.3.3, we also present the results of a policy that removes the post-disaster transfers’

transformation rate into local amenities or their impact on local productivity. Finally, we illustrate

how to use our dynamic spatial model for evaluating the efficiency cost of the electoral-cycle-driven

post-disaster policy.

7.1 Population Sorting

Fiscal transfers change the spatial distribution of economic activity by creating incentives for house-

holds to move toward regions receiving transfers (Fajgelbaum and Gaubert (2020); Henkel et al.

(2021)). Analogously, switching off the effect of the electoral-cycle-driven transfers induces fewer

people to stay in places hit by a natural disaster. Economic activity instead moves toward high-fiscal-

revenue regions that are financing the transfers.

Panel (a) of Figure 5 depicts ratios in local population size after 80 years in our baseline scenario

relative to our counterfactual without the effect of the electoral cycle. In our baseline, more households

18Recall from Sections 4 and 6.4 that in using an absorbing treatment, we capture the average effect of ever being
treated within the sample time window.
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(a) Population Size after 80 Years: Baseline vs. Counterfactual

(b) Percentage Changes in Aggregate Productivity, Real GDP, and Welfare: Baseline vs. Counterfactual

Figure 5: Aggregate Changes of Electoral-Cycle-Driven Post-Disaster Polices

Notes: The map in Panel (a) depicts the ratio in local population size between current post-disaster policies and a
counterfactual scenario without electoral-cycle-driven post-disaster policies after 80 years of simulation. The warm color
represents more households in the baseline scenario after 80 years relative to the counterfactual. Panel (b) depicts
the changes in aggregate productivity, real GDP, and welfare given the current post-disaster policies compared to the
counterfactual scenario.
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would stay in coastal areas with higher hurricane risks around the Gulf of Mexico, Southeast Florida,

and the Atlantic Ocean at the expense of highly productive areas such as New York, Chicago, and the

San Francisco Bay Area. Compared to a scenario without electoral-cycle-driven post-disaster policies,

the current post-disaster policies increase on-cycle county populations by 13.06% on average in 80

years. At the aggregate level, the policies induce around 25, 500 individuals (i.e., the size of a median

county in 2001) to change their residence yearly. In Appendix B.3.1, we discuss the sensitivity of our

results. Not surprisingly, higher migration or smaller trade elasticities would lead to more extensive

migration flows and population sorting toward on-cycle counties.

7.2 Local Amenities and Public Goods Provision

In addition to population sorting, the electoral-cycle-driven post-disaster policy also impacts the gov-

ernment budget via changes in expenditure on publicly provided goods, tax revenues, and transfers.

We now discuss our results, considering the implied changes in these components. Higher transfers

and tax revenues allow for more public goods provision and thus make treated regions relatively more

attractive. In Section 6.4, we found that after on-cycle events, transfers and fundamental amenities

increase in response to natural disasters, creating additional incentives for people to move there.

Switching off the impact of the electoral cycle on post-disaster grants negatively affects local

government budgets and therefore local public goods provision across treated regions. Moreover, it

removes the transformation rate of public funds into local amenity values and the negative impact

on local productivity. In our counterfactual scenario, the level of local amenities and public goods

provision remains the same in places struck by an on-cycle disaster, contrary to our baseline. At the

same time, public goods provision increases in the former donor regions since they need to give fewer

tax revenues to other counties (especially those hit by disasters).

The electoral-cycle-driven post-disaster policy also has an aggregate impact on the total govern-

ment budget. In our counterfactual scenario, public goods provision is shifted across space since we

remove the increases in direct post-disaster transfers. Further, in our counterfactual, we remove the

impact of the policy on the aggregate net tax revenue from production and location adjustments.

Later in Section 7.5, we discuss the aggregate efficiency costs of this budgetary impact.

7.3 Real GDP and Productivity

The population sorting patterns resulting from the current system of post-disaster policies relative to

removing the electoral cycle lead to additional productivity and real GDP changes across counties.
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In particular, on-cycle regions that attract more populations experience a slight increase in produc-

tivity via endogenous agglomeration economies and innovation in our baseline. This sorting into the

disaster-affected areas leads to out-migration from donor regions, which get less productive and inno-

vative. Higher post-disaster efforts, however, also distort the local economy and reduce productivity

significantly after an on-cycle event, as illustrated in Section 6.4. In sum, the electoral-cycle-driven

post-disaster policies lead to a decline in average productivity and real GDP at the national level.

Panel (b) of Figure 5 shows that aggregate productivity decreases in our baseline relative to

the counterfactual scenario. Removing the electoral-cycle-driven post-disaster policy implies no local

changes in amenity and productivity values and transfers and thus less population sorting to coastal

areas. The current electoral-cycle-driven post-disaster policy leads to a loss of aggregate productivity

of around 0.90% and real GDP by 1.47% after 80 years relative to our counterfactual scenario. In

present discounted value (PDV) terms, the policy yields an output loss of 1.17%. When we switch

off the impact of the policy on local productivity, the aggregate real GDP change would be even

more negative. The reason for this is that productivity declines due to an actual bigger loss of

productivity spillovers. In Appendix B.3.3, we describe more rigorously the procedure and implications

of our additional counterfactual exercise. Overall, the current post-disaster policies in the U.S. lower

aggregate productivity and real GDP at the national level.

7.4 Welfare

Population sorting affects productivity, real GDP, endogenous amenity values, and congestion forces.

In our counterfactual, amenities stay the same in coastal areas after being hit by on-cycle disasters,

which attracts fewer people to these places compared to the baseline scenario. Donor regions not

exposed to natural disasters now gain population size in our counterfactual. This reallocation of labor

relaxes local congestion in coastal areas, but also lowers amenities in areas receiving an inflow of

population due to the increased congestion. Those implied changes in local amenities are essential for

the aggregate welfare implications of post-disaster policies. Our measure of aggregate welfare accounts

for these local amenity effects, whereas aggregate productivity and real GDP do not.

Our simulation shows that due to the electoral motives affecting the distribution of post-disaster

grants, by 2081, welfare declines mildly by 0.02% in the baseline relative to our counterfactual. Even

if we measure welfare as the present discounted value of the population-weighted average of u(r), the

resulting welfare change is only +0.17%. Stated differently, even though the current system of post-

disaster policies leads to a loss in aggregate productivity and real GDP, it barely affects aggregate
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welfare compared to a scenario without the electoral cycle.

This result can be explained as follows. With less (or no) support from post-disaster policies in our

counterfactual scenario, amenities stay the same in locations hit by an on-cycle natural disaster. This

occurs because post-disaster programs must be included to transform public funds into higher-quality

amenities that households value. We thus find that the population gets less concentrated in the coastal

areas affected by natural disasters in our counterfactual scenario. A higher rate of transformation of

public funds into local amenity values inflates the aggregate amount of amenities that households can

benefit from in the baseline compared to the counterfactual. Hence, the aggregate welfare change is

smaller when we switch off the transformation of fundamental amenities in an additional counterfactual

(see Appendix B.3.3).

Recall that we have quantified the model such that the static dispersion forces are higher than

the agglomeration forces at the margin. As a result, we also see in our baseline a more considerable

net increase in amenities (due to a higher concentration of population in coastal areas) than the

accompanying productivity losses due to out-migration from the most productive cities. Due to

in-migration, these net donor regions are more productive in our counterfactuals. Some net donor

regions are located on the Atlantic coast in the initial equilibrium (see Figure 4), and these places

feature high fundamental productivity and amenity levels but are also initially congested in the initial

equilibrium. However, in our counterfactual scenario, these places also become much more congested

without electoral-cycle-driven post-disaster policies. The latter effect dominates the overall welfare

effects in our counterfactual simulations. However, in the long run, dynamic agglomeration spillovers

that account for past productivity on the rest of the economy are more important than static ones.

To summarize, post-disaster policies are, on average, associated with further redevelopment in

affected areas, which increases the level of amenities in the economy. However, these increased ameni-

ties come at high productivity costs, mainly because over-congested but productive places finance

these post-disaster policies. The latter productivity effect cancels the positive impact of amenities on

welfare.

7.5 Evaluating Efficiency

To make our aggregate results comparable to other policies, we approximate the efficiency cost by

the marginal value of public funds (MVPF) (Mayshar, 1990; Hendren and Sprung-Keyser, 2020). In

doing so, we assess the benefit or cost (i.e., willingness to pay) and the corresponding net cost for each

county of the electoral-cycle-driven post-disaster policy. Relying on our dynamic spatial model for
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this exercise allows us to include not only the policy’s initial cost but also all other general equilibrium

effects like location decisions, price adjustments on the government budget, production externalities,

and dynamic growth effects associated with changes in the spatial distribution of economic activity.

Remember that the policy reallocates the population mass of a median-sized county across space

annually with a sizable impact on the aggregate economy.

In evaluating the net impact of the electoral-cycle-driven post-disaster policy on government bud-

gets and public goods provision, we calculate the present discounted value of the sum of local gov-

ernment budgets. We calculate foregone tax revenues and transfer paid to derive the net cost of

maintaining the current electoral-cycle-driven post-disaster policies. Our analysis incorporates specif-

ically the harmful effects of spatial misallocation of labor and productivity distortions on future tax

revenues. Due to significant locational responses to the policy, their effects on tax revenues are big

compared to the post-disaster transfer. Discounting the foregone tax revenues and post-disaster trans-

fers to the present value, we get an annual $64 tax revenue loss per $14 average annual post-disaster

grant. Overall, the current policy makes the average U.S. taxpayer pay for it by $22 billion per year,

that is, $78 per capita per year. Thus, the fiscal externality alone comprises roughly 82% of the total

net cost of the policy. Our model-based aggregate measure suggests that the policy has misallocated

the population mass of 459, 000 individuals, i.e., around 0.16% of the total population, across space,

resulting in net costs of around $396 billion between 2001 and 2019. Examining the size of higher

post-disaster transfers allocated during the same period with a simple back-of-the-envelope exercise

yields only $289 billion because it understates the policy’s aggregate consequences.19

We next examine how much taxpayers would be willing to pay for the policy and how this com-

pares to its net costs. Our simulated changes of present discounted utility between our baseline and

counterfactual allow us to calculate each region’s marginal utility of the electoral-cycle-driven post-

disaster policy. Dividing the marginal utility of the policy by the marginal utility of income in 2001

gives the willingness to pay, WTP (r) = ∆PDVu(r)/
(

∂u(r)
∂w(r) |2001

)
, of each household in location r

for the current electoral-cycle-driven post-disaster policy. Regions never hit by an on-cycle hurri-

cane have a negative average annual WTP component of $61. In contrast, on-cycle regions have a

positive WTP of $780 per capita per year. Combined, this yields an aggregate willingness to pay,

WTP =
∫
S WTP (s)H(s)L̄(s)ds, of $33 per capita and year.

We then compute the MV PF of the electoral-cycle-driven post-disaster policy by dividing the

19We briefly describe our approach in Appendix B.3.2.
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aggregate willingness to pay WTP by the net cost to the government:

MVPF ≡ WTP

Net Cost
.

We derive a small MVPF for the electoral-cycle-driven post-disaster policy. Tax revenue is diverted

to less valuable public expenditures each period, resulting in a social loss. For every dollar cost to the

government for the policy, U.S. residents would be willing to pay only $0.43. For comparison, we also

calculate the MVPF of additional counterfactual policies that shut down the amenity or productivity

effects of the policy. The MVPF of these counterfactual policies is much higher than that of the policy,

confirming the intuition that the amenity and productivity channels increase efficiency costs.

8 Conclusion

This paper provides new empirical and theoretical evidence on the spatial consequences of public

policies driven by electoral motives. We exploit the exogenous timing of hurricanes relative to Elec-

tion Day in the United States to study the impact of electoral motives on post-disaster efforts and

subsequent population sorting.

We first show empirically that on-cycle hurricanes lead to electorally motivated increases in local

public goods provision, especially in core transportation and energy infrastructures, which generate

durable improvements in the local quality of life but also distort local labor markets. As a result, on-

cycle hurricanes lead to a significant, immediate, and long-lasting net increase in population, indicating

that individuals sort into exposed areas following an electorally motivated post-disaster intervention.

In contrast, off-cycle disasters increase intergovernmental transfers to affected counties positively but

more mildly. These transfers do not translate into statistically significant responses in local public

goods provision or population, indicating that the policy response does not overcompensate for the

negative disaster shock, contrary to on-cycle hurricanes.

We next introduce the relationship between electoral cycles and post-disaster efforts as a new

feature in a dynamic spatial general equilibrium model. In our quantitative simulations, we switch off

the impact of electoral motives on post-disaster policies. Economic growth is negatively affected by

electoral-cycle-driven post-disaster policies, which lower productivity and real GDP by pushing people

to hazard-prone coastal areas and away from high-productivity areas. Under the current electoral-

cycle-driven post-disaster policies, U.S. residents would be willing to pay only $0.43 for every dollar

of electorally motivated post-disaster transfers.
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This work highlights that while fiscal redistribution occurs in space, it might be driven by electoral

motives. Consequently, electoral motives may alter the spatial distribution of fiscal resources and thus

trigger inefficient sorting responses as individual decisions are interrelated due to spillover effects. A

more concerted effort may be needed to shut down harmful spillovers while permitting productive

ones to flourish. In the context of post-disaster policies in the United States, we show that electorally

motivated transfers lead populations to inefficiently sort in hazard-prone areas with sizable negative

implications for the aggregate economy. Therefore, our work also calls into question the institutional

design of public policies bearing high political interests. In our case study, efficiency requires the

amount and type of post-disaster efforts to be independent of electoral motives, which entails moving

towards more autonomous, apolitical managing institutions.

In bridging political economy and economic geography, our model framework can be applied to

many other cases where electoral motives affect spatially redistributive policies. One promising re-

search avenue is incorporating other public policies that vary along the electoral cycle into our gen-

eral equilibrium framework. The existence of other electorally motivated policies, such as corporate

(Foremny and Riedel, 2014) or value-added taxation (Hallerberg and Scartascini, 2017; Benzarti et al.,

2020), may intensify the inefficient spatial sorting patterns in general equilibrium. We hope this new

approach provides researchers with an adequate tool to pursue exciting projects evaluating to what

degree electoral motives affect the aggregate economy.
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Fajgelbaum, P. D., Morales, E., Suárez Serrato, J. C., and Zidar, O. (2019). State taxes and spatial

misallocation. The Review of Economic Studies, 86(1):333–376.

Farhi, E. and Werning, I. (2017). Fiscal unions. American Economic Review, 107(12):3788–3834.

Ferrara, A., Testa, P. A., Zhou, L., et al. (2021). New area-and population-based geographic crosswalks

for U.S. counties and congressional districts, 1790-2020. Technical report, Competitive Advantage

in the Global Economy (CAGE).

Finan, F. and Mazzocco, M. (2021). Electoral incentives and the allocation of public funds. Journal

of the European Economic Association, 19(5):2467–2512.

Foremny, D. and Riedel, N. (2014). Business taxes and the electoral cycle. Journal of Public Economics,

115:48–61.

Frey, B. S. and Stutzer, A. (2002). What can economists learn from happiness research? Journal of

Economic Literature, 40(2):402–435.

Fried, S. (2021). Seawalls and stilts: A quantitative macro study of climate adaptation. The Review

of Economic Studies.

51



Fu, C. and Gregory, J. (2019). Estimation of an equilibrium model with externalities: Post-disaster

neighborhood rebuilding. Econometrica, 87(2):387–421.

Gagliarducci, S., Paserman, M. D., and Patacchini, E. (2019). Hurricanes, climate change policies and

electoral accountability. Technical report, National Bureau of Economic Research.

Gallagher, J. (2014). Learning about an infrequent event: evidence from flood insurance take-up in

the united states. American Economic Journal: Applied Economics, pages 206–233.

Gardner, J. (2022). Two-stage differences in differences. arXiv preprint arXiv:2207.05943.

Gaubert, C., Kline, P. M., and Yagan, D. (2021). Place-based redistribution. Working Paper 28337,

National Bureau of Economic Research.

Gibson, M. and Mullins, J. T. (2020). Climate risk and beliefs in new york floodplains. Journal of the

Association of Environmental and Resource Economists, 7(6):1069–1111.

Glaeser, E. L. and Gottlieb, J. D. (2008). The economics of place-making policies. Working Paper

14373, National Bureau of Economic Research.

Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of

Econometrics, 225(2):254–277. Themed Issue: Treatment Effect 1.

Grigg, N. S. (2015). Infrastructure report card: Purpose and results. Journal of Infrastructure Systems,

21(4):02514001.

Hallegatte, S. and Ghil, M. (2008). Natural disasters impacting a macroeconomic model with endoge-

nous dynamics. Ecological Economics, 68(1-2):582–592.

Hallerberg, M. and Scartascini, C. (2017). Explaining changes in tax burdens in latin america: Do

politics trump economics? European Journal of Political Economy, 48:162–179.

Hauer, M. E. (2017). Migration induced by sea-level rise could reshape the us population landscape.

Nature Climate Change, 7(5):321–325.

Healy, A. and Malhotra, N. (2009). Myopic voters and natural disaster policy. American Political

Science Review, 103(3):387–406.

52



Heblich, S., Trew, A., and Zylberberg, Y. (2021). East-side story: Historical pollution and persistent

neighborhood sorting. Journal of Political Economy, 129(5):1508–1552.

Heckman, J. J., Ichimura, H., and Todd, P. (1998). Matching as an econometric evaluation estimator.

The Review of Economic Studies, 65(2):261–294.

Heckman, J. J., Ichimura, H., and Todd, P. E. (1997). Matching as an econometric evaluation es-

timator: Evidence from evaluating a job training programme. The Review of Economic Studies,

64(4):605–654.

Hendren, N. and Sprung-Keyser, B. (2020). A unified welfare analysis of government policies. The

Quarterly Journal of Economics, 135(3):1209–1318.

Henkel, M., Seidel, T., and Suedekum, J. (2021). Fiscal transfers in the spatial economy. American

Economic Journal: Economic Policy, 13(4):433–68.

Holland, G. (2008). A revised hurricane pressure–wind model. Monthly Weather Review, 136(9):3432–

3445.

Hornbeck, R. (2012). The enduring impact of the american dust bowl: Short-and long-run adjustments

to environmental catastrophe. American Economic Review, 102(4):1477–1507.

Hornbeck, R. and Keniston, D. (2017). Creative destruction: Barriers to urban growth and the great

boston fire of 1872. American Economic Review, 107(6):1365–98.

Howe, P. D., Mildenberger, M., Marlon, J. R., and Leiserowitz, A. (2015). Geographic variation in

opinions on climate change at state and local scales in the usa. Nature Climate Change, 5(6):596–603.

Hsieh, C.-T. and Moretti, E. (2019). Housing constraints and spatial misallocation. American Eco-

nomic Journal: Macroeconomics, 11(2):1–39.

Jerch, R., Kahn, M. E., and Lin, G. C. (2023). Local public finance dynamics and hurricane shocks.

Journal of Urban Economics, 134:103516.

Kahneman, D. and Deaton, A. (2010). High income improves evaluation of life but not emotional

well-being. Proceedings of the National Academy of Sciences, 107(38):16489–16493.

53



Kline, P. and Moretti, E. (2014). Local economic development, agglomeration economies, and the

big push: 100 years of evidence from the tennessee valley authority. The Quarterly Journal of

Economics, 129(1):275–331.

Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh,

M., Sugi, M., Walsh, K., et al. (2020). Tropical cyclones and climate change assessment: Part ii:

Projected response to anthropogenic warming. Bulletin of the American Meteorological Society,

101(3):E303–E322.

Kocornik-Mina, A., McDermott, T. K., Michaels, G., and Rauch, F. (2020). Flooded cities. American

Economic Journal: Applied Economics, 12(2):35–66.

Lee, S. and Lin, J. (2018). Natural amenities, neighbourhood dynamics, and persistence in the spatial

distribution of income. The Review of Economic Studies, 85(1):663–694.

Lindbeck, A. and Weibull, J. W. (1987). Balanced-budget redistribution as the outcome of political

competition. Public Choice, 52(3):273–297.

Magontier, P. and Martinez Mazza, R. (2023). Floods & urban density. Available at SSRN 4388712.

Mahajan, P. and Yang, D. (2020). Taken by storm: Hurricanes, migrant networks, and us immigration.

American Economic Journal: Applied Economics, 12(2):250–77.

Mayshar, J. (1990). On measures of excess burden and their application. Journal of Public Economics,

43(3):263–289.

McNamara, D. E. and Keeler, A. (2013). A coupled physical and economic model of the response of

coastal real estate to climate risk. Nature Climate Change, 3(6):559–562.

Monte, F., Redding, S. J., and Rossi-Hansberg, E. (2018). Commuting, migration, and local employ-

ment elasticities. American Economic Review, 108(12):3855–90.

Mullahy, J. and Norton, E. C. (2022). Why transform Y? a critical assessment of dependent-variable

transformations in regression models for skewed and sometimes-zero outcomes. Working Paper

30735, National Bureau of Economic Research.

54



Noy, I. and Nualsri, A. (2011). Fiscal storms: public spending and revenues in the aftermath of natural

disasters. Environment and Development Economics, 16(1):113–128.

Olsen, A. H. and Porter, K. A. (2011). What we know about demand surge: Brief summary. Natural

Hazards Review, 12(2):62–71.

Painter, W. (2019). Disaster relief fund: Overview and issues. Technical report, Congressional Research

Service, Washington, DC.

Persson, T. and Tabellini, G. (2012). Macroeconomic Policy, Credibility and Politics. Routledge.

Pierson, K., Hand, M. L., and Thompson, F. (2015). The government finance database: A common

resource for quantitative research in public financial analysis. PLOS ONE, 10(6):e0130119.

Piketty, T., Saez, E., and Zucman, G. (2017). Distributional national accounts: Methods and estimates

for the united states. The Quarterly Journal of Economics, 133(2):553–609.

Pradhan, S. and Arneson, E. (2021). Postdisaster labor-demand surge in the us highways, roads, and

bridges construction sector. Journal of Management in Engineering, 37(1):04020102.

Rajan, R. G. and Subramanian, A. (2011). Aid, dutch disease, and manufacturing growth. Journal

of Development Economics, 94(1):106–118.

Roback, J. (1982). Wages, rents, and the quality of life. Journal of Political Economy, 90(6):1257–1278.

Rogoff, K. (1990). Equilibrium political budget cycles. American Economic Review, 80(1):21–36.

Rogoff, K. and Sibert, A. (1988). Elections and macroeconomic policy cycles. The Review of Economic

Studies, 55(1):1–16.

Rosen, S. (1979). Wage-based indexes of urban quality of life. Current Issues in Urban Economics,

pages 74–104.

Rossi-Hansberg, E., Sarte, P.-D., and Owens III, R. (2010). Housing externalities. Journal of Political

Economy, 118(3):485–535.

55



Roth, J., Sant’Anna, P. H., Bilinski, A., and Poe, J. (2022). What’s trending in difference-in-

differences? a synthesis of the recent econometrics literature. arXiv preprint arXiv:2201.01194.

Sant’Anna, P. H. and Zhao, J. (2020). Doubly robust difference-in-differences estimators. Journal of

Econometrics, 219(1):101–122.

Schneider, S. A. and Kunze, S. (2023). Disastrous discretion: Political bias in relief allocation varies

substantially with disaster severity. Available at SSRN 3786196.

Sieg, H. and Yoon, C. (2017). Estimating dynamic games of electoral competition to evaluate term

limits in us gubernatorial elections. American Economic Review, 107(7):1824–57.

Simonovska, I. and Waugh, M. E. (2014). The elasticity of trade: Estimates and evidence. Journal of

International Economics, 92(1):34–50.

Sohl, T., Reker, R., Bouchard, M., Sayler, K., Dornbierer, J., Wika, S., Quenzer, R., and Friesz, A.

(2016). Modeled historical land use and land cover for the conterminous united states. Journal of

Land Use Science, 11(4):476–499.

Spitzer, Y., Tortorici, G., and Zimran, A. (2020). International migration responses to modern europe’s

most destructive earthquake: Messina and reggio calabria, 1908. Working Paper 27506, National

Bureau of Economic Research.

Strobl, E. (2011). The Economic Growth Impact of Hurricanes: Evidence from U.S. Coastal Counties.

The Review of Economics and Statistics, 93(2):575–589.
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APPENDIX

This Appendix provides (1) additional empirical results, internal and external validity checks support-

ing our findings from the main text, (2) theoretical derivations, (3) a description of the quantification

of the model, and (4) sensitivity checks and additional simulation results.

A Empirical Appendix

Subsection A.1 of this empirical part of the Appendix provides some background information on U.S.

hurricanes. Subsection A.5.3 shows that U.S. federal assistance varies significantly across the electoral

cycle. Subsection A.2 uses the IRS county-to-county migration data to decompose the population

stock into stayers, migrants moving in (inflow), and out (outflow) of counties. Subsection A.3 shows

that our main empirical results are consistent across alternative comparison groups, estimators, and

specifications. Subsection A.4 provides external validity checks. Finally, Subsection A.5 documents

the channels behind our main empirical results.

A.1 Hurricanes and Post-Disaster Policies

Table A.1 lists the number of historical hurricanes in the North Atlantic basin from 1851 to 2019.

Table A.2 provides a list of the U.S. hurricanes in our sample. From 2001 to 2019, 33 hurricanes

occurred, all during the hurricane season, between July and November. The intensity and the wind

speed of tropical cyclones vary across hurricanes. We match the date of hurricanes (Column (1))

to the closest Election Day date (Column (9)) and calculate how many days are left until the next

Election Day when the hurricanes hit. We define a hurricane as an on (off) cycle if the next election

is set less (more) than 365 days after the hurricane hits. Table A.3 presents descriptive statistics of

treated areas’ 2001 primary outcomes of interest for counties ever hit by any on-or off-cycle hurricanes

between 2001 and 2019.
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Table A.1: Historical Hurricanes in the North Atlantic Basin (1851–2019)

Tropical Hurricanes Major U.S.
Storms Hurricanes Hurricanes

Total Numbers 1,625 917 315 294
Annual Mean 9.67 5 1.875 1.75
Annual Median 9 5 2 2
Annual Max 28 15 7 7
Annual Min 1 0 0 0

Notes: Descriptive statistics are extracted from the “North Atlantic Hurricane Basin
(1851–2019) Comparison of Original and Revised HURDAT” from NOAA. All columns
report descriptive statistics about tropical storms that have formed in the North Atlantic
basin broken down into different categories: tropical storms (≥ 39 mph), hurricanes (≥
73 mph), and major hurricanes (≥ 111 mph). U.S. hurricanes are hurricanes that made
landfall in the U.S. Mean, median, maximum, and minimum are defined annually.
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Table A.2: List of U.S. Hurricanes (2001–2019)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Date Subbasin Name
Max. Wind

(kts)
Pressure
(mb)

Pressure (mb) of the
outermost closed isobar

Radius (miles) of the
outermost closed isobar

Radius (miles)
of maximum winds

Next
Election Day

Days until next
Election Day

On-cycle
Hurricane

2002-10-03 GM LILI 80 963 1012 200 10 2002-11-05 33 1
2003-07-15 GM CLAUDETTE 80 979 1013 180 15 2004-11-02 476 0
2003-09-19 NA ISABEL 65 969 1010 300 45 2004-11-02 410 0
2004-08-03 NA ALEX 85 973 2004-11-02 91 1
2004-08-14 NA CHARLEY 65 997 2004-11-02 80 1
2004-09-05 NA FRANCES 95 958 2004-11-02 58 1
2004-08-29 NA GASTON 65 986 2004-11-02 65 1
2004-09-16 GM IVAN 107 937 2004-11-02 47 1
2004-09-26 NA JEANNE 95 953 2004-11-02 37 1
2005-07-06 GM CINDY 65 991 1012 150 20 2006-11-07 489 0
2005-07-10 GM DENNIS 110 942 1011 250 10 2006-11-07 485 0
2005-08-29 NA KATRINA 65 954 1005 300 27 2006-11-07 435 0
2005-09-14 NA OPHELIA 75 979 1013 200 30 2006-11-07 419 0
2005-09-24 GM RITA 89 940 1009 300 20 2006-11-07 409 0
2005-10-24 GM WILMA 105 950 1005 300 30 2006-11-07 379 0
2007-09-13 NA HUMBERTO 74 986 1012 90 12 2008-11-04 418 0
2008-07-24 NA DOLLY 60 981 1010 180 15 2008-11-04 103 1
2008-09-01 NA GUSTAV 90 954 1007 232 25 2008-11-04 64 1
2008-09-13 GM IKE 95 951 1007 312 35 2008-11-04 52 1
2011-08-28 NA IRENE 60 958 1007 382 100 2012-11-06 436 0
2012-08-29 GM ISAAC 70 966 1008 275 40 2012-11-06 69 1
2012-10-29 NA SANDY 80 940 1004 500 110 2012-11-06 8 1
2014-07-04 NA ARTHUR 85 975 1013 160 20 2014-11-04 123 1
2016-09-02 NA HERMINE 65 982 1009 240 25 2016-11-08 67 1
2016-10-09 NA MATTHEW 70 981 1008 270 40 2016-11-08 30 1
2017-08-26 GM HARVEY 115 941 1009 180 15 2018-11-06 437 0
2017-09-11 NA IRMA 65 961 1008 350 20 2018-11-06 421 0
2017-09-20 NA MARIA 115 935 1009 180 15 2018-11-06 412 0
2017-10-08 GM NATE 75 983 1006 250 25 2018-11-06 394 0
2018-09-14 NA FLORENCE 62 973 1012 205 30 2018-11-06 53 1
2018-10-11 NA MICHAEL 65 968 1007 215 17 2018-11-06 26 1
2019-07-13 GM BARRY 65 993 1007 180 40 2020-11-03 479 0
2019-09-06 NA DORIAN 90 956 1014 300 25 2020-11-03 424 0

Notes: The data displayed in the table correspond to the date of maximum winds when the hurricane hit the U.S. Subbasin: “GM”= Gulf of Mexico, “NA” = North Atlantic,
and “CS” = Caribbean Sea. The outermost closed isobar determines the maximum extent of the cyclone.
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Table A.3: Descriptive Statistics of Treated Areas’ 2001 Main Outcomes

(1) (2) (3) (4)
All On-cycle Off-Cycle Mean Diff
µ µ µ (3)-(2)
σ σ σ (t-stat)

Local Characteristics

Total Population 160,864.3 139,749.2 174,342.1 34,592.87
(451,487.2) (349,878.8) (50,6054.8) (0.73)

GDP per capita (in $2001) 29,492.23 28,907.02 29,865.77 958.75
(37,946.38) (53,426.63) (23,346.32) (0.24)

Local Public Budget (in thsnd. dollars)

Public Good Provision 740,801.7 528,698 876,187 347,488.9
(2,034,228) (1,366,036) (2,356,955) (1.64)

Own-collected Revenues 380,060.5 285,091.4 440,679.1 155,587.7
(1,814,153) (856,882.4) (221,8977) (0.82)

Intergovernmental Revenues 216,745.4 145,142 26,2449.7 117,307.7
(1,156,179) (334,854.8) (145,4943) (0.97)

Debt Issued 83,853.07 59,558.95 99,359.96 39,801.01
(585,148.1) (266,453.1) (718,371.1) (0.65)

Observations 385 150 235

Notes: Descriptive statistics of treated areas’ 2001 main outcomes for counties (column 1) ever hit, (column 2)
first hit by on-cycle hurricanes, and for those (column 3) first hit by off-cycle hurricanes between 2001 and 2019.
µ and σ are the mean and standard deviation, respectively.

A.2 IRS Tax Returns and County-to-County Flows

To better understand how population sorting operates after an on-cycle hurricane, we split the pop-

ulation stock into flows of stayers, migrants moving in (inflow), and migrants moving out (outflow)

using the IRS county-to-county migration data. When we regress each flow separately against our

primary treatment, we observe that the increase in population after on-cycle hurricanes follows an

increasing number of people deciding to stay. While giving some insights, the IRS data limitations

prevent a straightforward interpretation of these results.
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(a) On-Cycle (b) Off-Cycle

Figure A.1: On- vs. Off-Cycle Hurricane Treatment Effect on Population Flows

Notes: This figure plots the estimates of the event study and corresponding 95% confidence bands of different specifica-
tions of equation (1). The dependent variable is the total population and the number of stayers, inflows, and outflows.
The comparison group includes the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regres-
sion model includes county and year fixed effects. Standard errors are clustered at the county level.

A.3 Internal Validity

We report further checks to document the internal validity of our results.

A.3.1 Alternative Control Groups

As developed in Section 4, one might be worried that our control group could follow different pre-trends

or be subject to regional spillovers, threatening our identification strategy. This section documents

that our main outcome results are robust to using alternative comparison groups. We define eight

possible comparison groups amongst untreated counties: counties not exposed to hurricanes, counties

exposed to tropical storms, counties exposed to hurricanes, counties within 1000, 500, 250, and 100

kilometers from the centroid of affected counties, and finally, all counties in the continental United

States. We investigate how including not-yet-treated counties in these groups affects our main results.

To measure exposure to storms, we plot 1000 years of simulated storm tracks from the STORM dataset

(Bloemendaal et al., 2020) which mimics the current climate conditions from the storm database used

for our primary analysis. In doing so, we intend to capture storm exposure at the extensive margin.

Unexposed locations, typically far from affected areas, such as counties in Colorado or Washington,

are likely following different trends before the hurricane. Figure A.2 depicts these locations in gray. If

the population declines in these unexposed counties compared to treated ones before the treatment,

there is a high chance it would do so past the treatment, in which case our main result would be
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upward biased. The closer we get to exposed areas (in green and blue in Figure A.2) and, a fortiori,

affected areas, the more likely the spillover effects. If hurricanes, especially those occurring close to

elections, also encourage economic activity sorting in untreated but exposed counties, our main effect

would be biased downward by including such physically close areas in our control group.

Figure A.2: Areas Exposed to Tropical Storms

Notes: This figure displays the locations exposed to tropical storms (blue and green areas) and hurricanes (only green
areas). Gray areas are not exposed. Exposure was defined using 1000 years of simulated storm tracks from the STORM
dataset (Bloemendaal et al., 2020).

To ensure our results’ validity, we test our main specification (see Equation 1) against these alter-

native comparison groups. Using these alternative comparisons, Figure A.3 depicts the average impact

of on- and off-cycle hurricanes on population and local public good provision. First, the effect of the

electoral cycle remains in all specifications. Second, the ATTs are not statistically different across

specifications. Finally, on average, control groups subject to spillovers (i.e., close to the treated areas)

yield smaller ATTs. As expected, control groups subject to different pre-trends (i.e., not exposed to

storms) yield larger ATTs. Together, these results are reassuring that we are correctly estimating the

causal impact of on- and off-cycle hurricanes on population and local public good provision.
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(a) Never-treated (b) Never and Not-yet-treated

(c) Never-treated (d) Never and Not-yet-treated

Figure A.3: On- vs. Off-Cycle Hurricane Treatment Effect Using Alternative Control
Groups

Notes: This figure plots the ATT estimates of the event study and corresponding 95% confidence bands of different
specifications of equation (1) for alternative control groups. The dependent variables are the log of population (Panels
(a) and (b)) and public good provision (Panels (c) and (d)). The comparison groups include never-treated counties
(Panels (a) and (c)) and never and not-yet-treated counties (Panels (b) and (d)). Each panel includes in column (1)
counties not exposed to any storm, (2) the rest of the U.S., (3) counties exposed to tropical storms, including hurricanes,
(4) counties exposed to hurricanes only, (5-8) counties located within [1,000, 500, 250, 100 km] from treated counties.
Event variables are dummies equal to 1 for a hurricane. The regression model includes county and year fixed effects.
Standard errors are clustered at the county level.

A.3.2 Alternative Estimators

We now show in Figure A.4 that our baseline results for the primary outcomes remain qualitatively

similar when applying the estimators of Abadie (2005) or Sun and Abraham (2021).

A.3.3 Controlling for Wind Speed upon Hit

Figure A.5 depicts that the public good provision and the population responses remain unchanged

when controlling for wind velocity upon landfall.
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(a) On-Cycle (b) Off-Cycle

(c) On-Cycle (d) Off-Cycle

Figure A.4: On- vs. Off-Cycle Hurricane Treatment Effect Using Alternative Estima-
tors

Notes: This figure plots the event study estimates and corresponding 95% confidence bands of different specifications
of equation (1) for various estimators. The dependent variables are the log of population (Panels (a) and (b)) and public
good provision (Panels (c) and (d)). The comparison group includes all never-treated counties. Estimates are normalized
to the year preceding the shock. Event variables are dummies equal to 1 for a hurricane. The regression model includes
county and year fixed effects. Standard errors are clustered at the county level.
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(a) Public Goods provision (b) Population

Figure A.5: On- vs. Off-Cycle Hurricane Treatment Effect Controlling for Wind
Velocity
Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of public good and service provision (i.e., government output; see the
BEA’s definition) (Panel (a)) and the log of the population (Panel (b)), aggregated at the county level. The comparison
group includes the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regressions control for
wind velocity upon landfall. The regression models include county and year fixed effects. Standard errors are clustered
at the county level.
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A.4 External Validity

In this subsection of the Appendix, we provide evidence of the external validity of our results.

A.4.1 Extending the Time Period (1969-2019)

As our analysis extends back to 1969, Figure A.6 demonstrates that the population of counties hit by

on-cycle hurricanes has grown significantly, signifying that recent extreme weather events do not drive

our main result.

Figure A.6: On- vs. Off-Cycle Hurricane Treatment Effect on Log Population (1969–
2019)

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of the population aggregated at the county level between 1969 and
2019. The comparison group includes the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The
regression models include county and year fixed effects. Standard errors are clustered at the county level.

A.4.2 Largest Wildfires (1988-2019)

We now use extreme wildfires as treatments to convince ourselves that our main results can be gen-

eralized to other types of catastrophe events. There is a noticeable increase in population in counties

impacted by on-cycle wildfires compared to counties impacted by off-cycle wildfires, as shown in Figure

A.7.
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Figure A.7: On- vs. Off-Cycle Wildfire Treatment Effect on Log Population (1988–
2019)
Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of the population aggregated at the county level. The comparison group
includes the rest of the U.S. Event variables are dummies equal to 1 for a wildfire. The regression models include county
and year fixed effects. Standard errors are clustered at the county level.

A.5 Mechanisms

In this subsection, we investigate the possible mechanisms behind the main empirical results we

document above.

A.5.1 Electoral Motives

It may be that our main results are not driven by electoral motives but by a concurrent apolitical

mechanism. This subsection further checks how electoral motives may affect the local public good

provision and population sorting.

The literature has traditionally focused on pork-barrel transfers to swing voters (Lindbeck and

Weibull, 1987; Dixit and Londregan, 1996), which is a profitable strategy when the incumbents’ office

is highly disputed. In Presidential elections, such transfers could help the incumbent party secure the

Electoral College’s votes. When incumbents’ offices are little disputed, ideological favoritism flourishes

(Trounstine, 2006; Burgess et al., 2015; Curto-Grau et al., 2018). This latter case may be particularly

notable for intergovernmental earmarked transfers, such as post-disaster grants, which typically involve

spending rules determined by the grantor and the coordination of local authorities. Favoring co-

partisan local authorities helps secure the incumbent’s position at the expense of opposition parties
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(Curto-Grau et al., 2018).

We gather electoral information from the MIT Election Lab to define political alignment and

swing state status dummies. A politically aligned county is defined as having voted for the incumbent

President’s party in the House of Representatives on the last Election Day. Because Congressional

elections are not available at the county level, we assign votes at the congressional district level to

counties using population weights accounting for topographic suitability (Ferrara et al., 2021; Eckert

et al., 2020). Swing states are states where the margin of victory in the last Presidential Election was

below the median.

(a) Political Alignment (b) Swing States

(c) Political Alignment (d) Swing States

Figure A.8: Treatment Effect by Political Dimension

Notes: This figure plots estimates of the event study and corresponding 95% confidence bands of different specifications
of equation (1). The dependent variables are the log of the population (Panels (a) and (b)) and public good provision
(Panels (c) and (d)). The comparison group includes the rest of the U.S. Event variables are dummies equal to 1 for a
hurricane. The regression model includes county and year fixed effects. Standard errors are clustered at the county level.

Using these alternative electoral dimensions supports the mechanisms developed in Section 4.4:
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post-disaster efforts are a function of electoral incentives. Figure A.8 shows that counties aligned with

the incumbent President’s party or belonging to a swing state receive, on average, a more significant

public good provision in the aftermath of a hurricane, leading to an extensive population sorting.

Our subsequent findings reinforce that federal electoral motives play a significant role in population

sorting. Population sorting in affected areas started after the 1988 Stafford Act (see Figure A.9), which

gave the President greater discretion over post-disaster policies (see Section 2).

(a) Before the Stafford Act of 1988 (b) After the Stafford Act of 1988

Figure A.9: On- vs. Off-Cycle Hurricane Treatment Effect on Log Population before
and after the Stafford Act of 1988

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of the population aggregated at the county level between 1969 and 1988
(Panel (a)) and between 1988 and 2019 (Panel (b)). The comparison group includes the rest of the U.S. Event variables
are dummies equal to 1 for a hurricane. The regression models include county and year fixed effects. Standard errors
are clustered at the county level.

Panel (a) Figure A.10 indicates that counties hit by on-cycle hurricanes with significant wind

speeds provide significantly more public goods and services. In the same way, major winds are likely

to trigger a sorting response, confirming that the DRF voted by federal authorities primarily responds

to catastrophic events (see Panel (b) of Figure A.10).

A.5.2 Fiscal Revenues Redistribution

We now examine how counties affected by on-cycle hurricanes finance this significant increase in public

goods provision. First, despite a short-lived positive response in own-collected revenues following an

on-cycle hurricane, the impacts of on-cycle hurricanes on local own-collected revenues and local debt

are statistically insignificant (see Figures A.11 and A.12). Finally, we document a statistically and

economically significant rise in intergovernmental transfers to these counties (see Figure A.13).
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(a) Local Public Goods Provision (b) Population

Figure A.10: On- vs. Off-Cycle Major Hurricane Treatment Effect

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of public good and service provision (i.e., government output; see the
BEA’s definition) (Panel (a)) and the log of the population (Panel (b)), aggregated at the county level. The comparison
group includes the rest of the U.S. Event variables are dummies equal to 1 for a major hurricane (i.e., category 3–5
hurricanes with wind velocity ≥ 50m/s measured by the CLIMADA wind field model). The regression models include
county and year fixed effects. Standard errors are clustered at the county level.

Figure A.11: On- vs. Off-Cycle Hurricane Treatment Effect on Local Own-Collected
Revenues

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of local revenues collected by local authorities at the county level. The
comparison group includes the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regression
model includes county and year fixed effects. Standard errors are clustered at the county level.

A.5.3 On-Cycle Hurricanes and FEMA Post-Disaster Grants

In this subsection, we investigate whether the timing of hurricanes relative to Election Day is a good

predictor of FEMA post-disaster grants. The sample considers all counties that were ever hit by a
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Figure A.12: On- vs. Off-Cycle Hurricane Treatment Effect on Local Debt Issued

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of local debt issued at the county level. The comparison group includes
the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regression model includes county and
year fixed effects. Standard errors are clustered at the county level.

Figure A.13: On- vs. Off-Cycle Hurricane Treatment Effect on Intergovernmental
Transfers

Notes: This figure plots event study estimates and corresponding 95% confidence bands of different specifications of
equation (1). The dependent variable is the log of intergovernmental transfers at the county level. The comparison
group includes the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regression model includes
county and year fixed effects. Standard errors are clustered at the county level.

hurricane and received a Presidential Disaster Declaration for a hurricane between 2001 and 2019.

Most post-disaster grant programs are run by FEMA (individual assistance, public assistance, hazard

mitigation grant). Because post-disaster grants are earmarked, unique cash flows to economic agents,
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an event study specification would be less insightful. Instead, we estimate the following specification:

Grantsit = αi + γt + β1.On-Cycleit + β2.On-Cycleit × Intensityit + ϵit, (1)

where Grantsit is the log per capita post-disaster grants a county received conditional on having been

hit by a hurricane and declared for the related grant program. On-Cycleit indicates whether the

hurricane occurred less than 365 days before Election Day, and Intensityit stands for the demeaned

wind intensity. Here, β1 captures the impact of an average on-cycle hurricane compared to an average

off-cycle hurricane, whereas β2 captures the additional effect of deviating from the average intensity.

Finally, αi and γt are county and Congress term fixed effects that account for any potential location

and time-invariant co-founders. Alternatively, we use the log number of days between a hurricane’s

landfall and Election day as our main treatment variable.

Table A.4 presents results on whether counties hit by an on-cycle hurricane are more likely to

receive more significant per capita spending from the federal government. Column (1) shows that

conditional on hurricane intensity, being hit by an on-cycle hurricane leads to a 113.2% increase in

FEMA grants per capita compared to an off-cycle hurricane. The effect increases significantly with

wind velocities above the mean. This result holds when conditioning the effect on Congress term and

county fixed effects (Column (2)). This result is also robust to using an alternative treatment—the

log number of days between a hurricane landfall and Election day: Columns (3) and (4) document

that the farther a hurricane occurs from Election Day, the smaller will be the post-disaster funds

transferred by FEMA. As in columns (1) and (2), deviations above average wind intensity positively

impact the transferred sums.

Figure A.14 illustrates the results from Table A.4 broken down by types of grants. This general

result is mainly driven by grants targeted to local public administrations (as opposed to private

individuals) through mitigation and relief grants. However, the impacts of the different programs are

generally statistically similar.

The results are consistent with the literature: state governments’ bailout activities are more respon-

sive where electoral accountability is greater (Besley and Burgess, 2002; Strömberg, 2004; Schneider

and Kunze, 2023). Previous studies also show that governments appear to be more generous with

disaster relief during election years, which can lead to suboptimal policy outcomes (Cole et al., 2012).

In addition, the literature has argued that relief grants are generally favored over mitigation grants be-

cause voters have a clear pre-disaster counterfactual to judge their representative’s action (Healy and

Malhotra, 2009). Here, our results confirm the hypothesis that electoral motives drive post-disaster
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Table A.4: On-Cycle Hurricanes and Post-Disaster Grants

(1) (2) (3) (4)
All grants Relief grants Mitigation grants To Public

On-Cycle 1.132*** 1.588***
(0.219) (0.558)

On-Cycle
× Intensity 0.124*** 0.066*

(0.021) (0.029)
Log Days -0.631*** -1.188***

(0.095) (0.240)
Log Days
× Intensity 0.029*** 0.023***

(0.002) (0.004)

Observations 420 420 420 420
County FE N Y N Y
Congress FE N Y N Y
Adj. R2 0.131 0.521 0.423 0.731

Notes: The dependent variable is the log per capita post-disaster grants a county re-
ceived conditional on having been hit by a hurricane and declared for the related grant
program. LogDays is the log number of days between a hurricane’s landfall and Election
day. Intensity stands for demeaned wind intensity (m.s−1). The observation is at the
yearly county level between 2001 and 2019. The sample includes all counties that were
ever hit by a hurricane and received a Presidential Disaster Declaration for a hurricane
between 2001 and 2019. Standard errors are clustered at the county level and are reported
in parentheses.

efforts, but relief and mitigation grants appear to be evenly favored during on-cycle events.

A.5.4 Local Amenities and Labor Demand Shocks

We also provide evidence suggesting that governments’ intervention improves local quality of life and

distorts local productivity. First, Figure A.15 depicts the existence of an electoral cycle in the activity

of the transportation and utility infrastructures construction industries. Next, Figure A.16 shows how

more elevated post-disaster subsidies near Election Day crowd out the manufacturing industry, lower

productivity, and reduce economic growth. In contrast, we do not see such changes after off-cycle

events.
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Figure A.14: Impact of Hurricane Timing on Post-Disaster Grants

Notes: This Figure displays the impact of on-cycle disasters and the log number of days before Election Day on post-
disaster grants (β1 in equation 1). The sample includes all counties that were ever hit by a hurricane and received a
Presidential Disaster Declaration for a hurricane between 2001 and 2019. As in Table A.4, columns (2) and (4) condition
the treatment effects on Congress term and county fixed effects. Standard errors are clustered at the county level.

B Theory Appendix

Subsection B.1 of this theoretical part of the Appendix presents derivations for the main paper.

Subsection B.2 provides further information about the quantification of our model. Subsection B.3.1

reports counterfactuals for alternative parameter constellations. Subsection B.3.2 presents a simple

back-of-the-envelope exercise that indicates the size of the post-disaster transfers allocated to counties

hit by on-cycle hurricanes between 2001 and 2019. Subsection B.3.3 demonstrates that population

sorting and aggregate dynamics depend critically on the transformation of amenities and distortion

of productivity.
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Figure A.15: On- vs. Off-Cycle Hurricane ATT on Post-Disaster Redevelopment

Notes: This figure plots ATT estimates and corresponding 95% confidence bands of different specifications of equation
(1). The dependent variable on the y-axis is the log of the number of establishments in selected NAICS industries
aggregated at the county level. The comparison group includes the rest of the U.S. Event variables are dummies equal
to 1 for a hurricane. The regression models include county and year fixed effects. Standard errors are clustered at the
county level.
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Figure A.16: On- vs. Off-Cycle Hurricane ATT on Local GDP

Notes: This figure plots ATT estimates and corresponding 95% confidence bands of different specifications of equation
(1). The dependent variables on the y-axis are logged and aggregated at the county level. The comparison group includes
the rest of the U.S. Event variables are dummies equal to 1 for a hurricane. The regression models include county and
year fixed effects. Standard errors are clustered at the county level.
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B.1 Derivations

The utility associated with net real income and amenities in location r is given by

ut(r) =at(r)

(
gt(r)

H(r)L̄t(r)η

)γ

ct(r)
1−γ

=at(r)

(
(tt(r) + θt(r))wt(r)L̄t(r)

L̄t(r)ηPt(r)

)γ (
(1− tt(r))wt(r) +Rt(r)/L̄t(r)

Pt(r)

)1−γ

=āt(r)L̄t(r)
−λ̃wt(r)

Pt(r)
Θt(r) with λ̃ = λ− γ(1− η), (2)

where Θt(r) ≡
[
(tt(r) + θt(r))

γ
(

ξ
µξ+γ1

− tt(r)
)1−γ

]
represents the combined public policy compo-

nent. The price index is given by (12), and land markets are in equilibrium such that Rt(r) =(
ξ(1−µ)−γ1

µξ+γ1

)
wt(r)L̄t(r) for all locations r and at(r) = āt(r)L̄t(r)

−λ.

We also know that the final good’s price in place r at time t is determined by the average price of

the various goods assembled in location r:

Pt(r) =

[
Γ

(
−ρ

(1− ρ)θ
+ 1

)]− 1−ρ
ρ
[∫

S
Tt(s)[mct(s)ζ(r, s)]

−θds

]− 1
θ

=p̄χt(r)
− 1

θ , (3)

with mct(r) = [1/µ]µ[νξ/γ1]
1−µ[ γ1Rt(r)

wt(r)ν(ξ(1−µ)−γ1)
](1−µ)−(γ1/ξ)wt(r),

and p̄ =
[
Γ
(

−ρ
(1−ρ)θ + 1

)]− 1−ρ
ρ
, where Γ denotes the gamma function.

Goods market clearing implies that total labor income in region r, wt(r)H(r)L̄t(r), must equal

region r’s total sales to all locations s ∈ S:

wt(r)H(r)L̄t(r) =

∫
S
Xt(s, r)ds

=

∫
S
πt(s, r)[(1 + θt(s))wt(s)H(s)L̄t(s)]ds, (4)

where Xt(s, r) = πt(s, r)[(1 + θt(s))wt(s)H(s)L̄t(s)]ds includes government transfers across regions.

The probability density that an intermediate good produced in r is bought in s is given by

πt(s, r) =
Tt(r) [mct(r)ζ(r, s)]

−θ∫
S Tt(u) [mct(u)ζ(u, s)]

−θ du
for all r, s ∈ S. (5)
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Substituting (3) into (2), we obtain

ut(r) =āt(r)L̄t(r)
−λ̃Θt(r)

wt(r)[∫
S Tt(s)[mct(s)ζ(r, s)]−θds

]− 1
θ p̄

. (6)

We can rewrite this as

(
āt(r)

ut(r)

)−θ

L̄t(r)
λ̃θΘt(r)

−θwt(r)
−θ =p̄−θ

∫
S
Tt(s)[mct(s)ζ(r, s)]

−θds,

from which we get the first set of equations that ut(·), L̄t(s), and wt(·) have to solve

(
āt(r)

ut(r)

)−θ

L̄t(r)
λ̃θΘt(r)

−θwt(r)
−θ =κ1

∫
S
τt(s)ζ(r, s)

−θwt(s)
−θL̄t(s)

α−(1−µ−γ1/ξ)θds, (7)

where κ1 ≡
[
µξ+γ1

ξ

][(µ−γ)+
γ1
ξ
]θ
µµθ

[
ξν
γ1

]− γ1θ
ξ

p̄−θ = κ2·p̄−θ and Tt(s)mct(s)
−θ = τt(s)L̄t(s)

α−(1−µ−γ1/ξ)θwt(s)
−θ·

κ2.

Inserting (5) and (3) into the goods market clearing condition (4), we get

wt(r)H(r)L̄t(r) =p̄−θ

∫
S
Tt(s)[mct(s)ζ(r, s)]

−θPt(s)
θ(1 + θt(s))wt(s)H(s)L̄t(s)ds.

Substituting (2), and employing Pt(s) =
(
āt(s)
ut(s)

)
L̄t(s)

−λ̃wt(s)Θt(s), symmetric trade costs ζ(r, s) =

ζ(s, r), and Tt(r) = τt(r)L̄t(s)
α yields the second set of equations that ut(·), L̄t(s), and wt(·) have to

solve:

τt(r)
−1wt(r)

1+θH(r)L̄t(r)
1−α+(1−µ−γ1/ξ)θ =κ1

∫
S

(
āt(s)

ut(s)

)θ

ζ(r, s)−θΘt(s)
θ

× (1 + θt(s))wt(s)
1+θH(s)L̄t(s)

1−λ̃ds. (8)

The third set of equations that ut(·), L̄t(s), and wt(·) have to solve is given by (5). While τt(·) comes

directly from (7) and L̄t−1(·), at(·) comes from (3), and θt(·) comes from (13).

B.2 Quantification

In this subsection of the Appendix, we discuss the data used for the quantitative analysis of the

model. We provide further information on how we recover the fundamentals and utility levels ut(r),
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for every county from our general equilibrium model. We discuss the effect of natural disasters and

the electoral cycle on amenities, productivity, tax, and transfer rates. Finally, we assess the model’s

in-sample performance.

B.2.1 Data Sources and Construction

Geographical land area. H(·) come from the 2010 U.S. Gazetteer Files.

Wages. w0(·) is measured as GDP per capita from the Bureau of Economic Analysis (BEA) website,

under Regional Data, Economic Profiles for all U.S. counties. Wages are normalized to have a mean

of one.

Total population. L̄0(·) is calculated by using data on the population distribution for each year

between 2001 and 2019 from the U.S. Census and Surveillance Epidemiology and End Results (SEER)

population database for all U.S. counties. For each year, we transform the population into population

per unit of land.

Tax and transfer rates. Critical ingredients for the quantification of our model are tax (t0(·)) and

transfer rates (θ0(·)) for each county between 2001 and 2019 in the United States. To the best of our

knowledge, we are unaware of any attempt to explore how government redistribution affects local fiscal

resources while looking at such fine geographical units. Hence, using a similar methodology as Piketty

et al. (2017), we compute the total collected taxes before and total spending after redistribution for

each county in the United States from 2001 to 2019. In combining tax, expenditure, and public finance

data and expressing total tax collected and total local spending as a percentage of local GDP, we then

calculate tax (t0(·)) and transfer rates (θ0(·)) for each county between 2001 and 2019 in the United

States. Table B.1 summarizes all the data sources we use to compute local total revenue and spending.

To deliver a complete picture of the distribution of fiscal resources across counties, we incorporate

all levels of government in our tax and transfer rates calculations. Specifically, we separate taxes and

spending at the federal and state from the county level. We assign all tax revenues and all forms

of government spending (including federal, state, and local taxes) to the local level under specific

assumptions explained in more detail below. We normalize so that both local tax revenues before and

local spending after redistribution add to aggregate spending. Specifically, we scale collected revenues

so that aggregate revenues equal aggregate spending. Between 2001 and 2019, the normalizing ratio of

aggregate spending to revenues is almost equivalent to 1. It equals 1.04, on average, with a standard

80

https://www2.census.gov/geo/docs/maps-data/data/gazetteer/Gaz_counties_national.zip
https://www.bea.gov/
https://seer.cancer.gov/popdata/download.html


deviation of 0.05. Then, we subtract all collected tax revenues from total local spending to calculate

total transfers per county.

We start by collecting tax revenues by state and local governments reported by the Government

Finance Database (Pierson et al., 2015), which provides information on government revenues from the

U.S. Census Bureau’s Census of Governments and the Annual Survey of State and Local Government

Finances collected by the federal, state, and local governments. We supplement this dataset using

various information at the federal and state level from the BEA, the White House Historical Tables,

and the Federal Reserve Bank of St. Louis FRED. In particular, we include total outstanding debt,

federal and state corporate taxes, and other federal and state taxes. No specific local information

is available that comprises all collected income taxes from federal, state, and local governments, and

therefore we instead rely on the NBER TAXSIM model to derive the federal and state income taxes for

the average taxpayer by county. Hence, we assume that the average taxpayer pays individual income

taxes in each county. As input variables for the NBER TAXSIM model, we use the information

on marital status, number of underage dependent members in the household, wage, dividends, rents,

social security compensations, other types of transfers to individuals, property tax, and mortgage value

of the average household in each county. To calculate the total collected income taxes, we multiply

this average amount of income taxes by the number of people over 18 years old in each county.

Corporate taxes are reported at the federal, state, and local levels. We allocate federal and state

corporate tax revenues to counties according to their local GDP shares. For the remaining taxes, we

proceed similarly (such as property taxes, sales taxes, and excise taxes). For states, we compute the

difference (total taxes collected minus individual taxes minus corporate taxes) as we do not have a

specific “other taxes” measure here. At the federal level, we compute the sum of “excise” and other

taxes. For all federal, state, and county levels, we compute the individuals’ “after-tax” income (i.e.,

gross income minus individual taxes at all levels minus social security contributions). We take the ratio

(remaining taxes/after-tax income) at the federal and state levels and multiply it by local (county)

after-tax income. As a result, our calculation of the total collected revenues captures the operation of

the social security and tax system before redistribution. It includes all individual, corporate, and other

taxes collected by local, state, and federal authorities, which we allocate to counties and aggregate

into one measure. Moreover, we account for all employer and employee social security contributions

and all intergovernmental (IG) transfers from local governments.

Government revenue is usually less than government expenditure. To match aggregate spending,

we also include the net debt contracted (i.e., the debt issued net of the interest paid on outstanding
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debt) by local, state, and federal authorities. Higher government debt can mean higher taxes, lower

government transfers, or both in the future. So to allocate the net debt to the current generation

of U.S. residents, we increase the total collected taxes in each county proportionally to local GDP.

This procedure implies that we assume that economic output is the primary collateral that allows for

debt contraction. Alternatively, like Piketty et al. (2017), we could assume that any government debt

translates into raised taxes and lowered public spending. In this sense, we would allocate 50% of the

net debt in proportion to total collected tax revenues and 50% in proportion to total local spending.

This alternative allocation rule would still be progressive but effectively lead to slightly lower average

tax rates yet higher average spending rates.

In calculating total local public spending, we use the BEA measure of local public goods and

services (i.e., the government output). To assess the value of these non-marketable assets, the BEA

measures input payments on labor, intermediate goods and services, and investment expenditures

by federal, state, and local governments. The consumption expenditures and gross investments from

federal and state governments are allocated to counties based on employment, GDP, net electricity

generation, and wages and salaries.20 We further account for intergovernmental transfers to local gov-

ernments and social transfers to individuals (such as unemployment benefits, Medicare and Medicaid,

veterans support, and pensions). Moreover, we add refundable tax credits and compensation for the

local administration. Overall, our measure of total local spending captures the total income available

for public spending.

Finally, we calculate the average tax rate as the ratio of the total tax collected locally to the local

GDP. Again, the average tax rates we compute account for all sources of tax revenues (individual,

corporate, and other taxes) collected by local, state, and federal authorities. They also account for

all employer and employee social security contributions, intergovernmental transfers, and net debt

contracted by local, state, and federal authorities. The transfer rate is calculated as the difference

between the spending rate (i.e., the ratio of total spending in local areas to local GDP) and the tax

rate.21 Both measures are winsorized at the 0.5% level to account for a few outliers.

Figure B.1 shows how tax rates (Panel (a)) and spending rates (Panel (b)) vary across counties in

2001. The tax rate was lower in Arizona, Nevada, Virginia, and some Texan counties. Spending rates

were lower along New England’s coast, California’s coast (between San Francisco and Los Angeles),

20See the BEA’s definition for a detailed description of the methodology.
21One could argue that intergovernmental transfers to or from local governments are systematically earmarked for

specific use. In that case, including intergovernmental transfers in our fiscal redistribution measures might lead to some
double counting. We calculate the alternative tax and transfer rates net of such intergovernmental transfers. These
latter highly correlate with our main measures: 98.71% for transfer rates and 99.02% for tax rates.
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(a) Tax Rates

(b) Spending Rates

Figure B.1: Calculated Tax and Spending Rates

Notes: This figure plots the tax rate (Panel (a)) and spending rate (Panel (b)) for our baseline year 2001. The warm
colors indicate higher deciles.
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Texas, and Louisiana’s Gulf Coast, and, in general, in urbanized counties.

Changes in tax and transfer rates affected the dynamic of total income available for public spending.

Figure B.2 shows how the average tax and expenditure rates vary over time. For the United States,

the average tax rate increased slightly from 39% in 2001 to 43% in 2019. At the same time, the

expenditure rates increased from about 55% of local GDP in 2001 to close to 60% in 2019. During

the Great Recession, tax credits in the context of the Affordable Care Act increased expenditure

rates. Higher transfers mainly financed them through the Economic Stimulus Payments in 2008, the

American Opportunity Tax Credit, and the Making Work Pay Tax Credit (as documented in Piketty

et al., 2017).

Figure B.2: Average Tax and Expenditure Rates

Notes: This figure depicts average tax and expenditure rates at the county level between 2001 and 2019 in the United
States.

Trade costs. ζ(·, ·) are constructed from detailed geospatial data on rail, road, and water networks.

Geographic data on the road network come from the National Highway Planning Network (NHPN),

and railroad network data come from the Federal Railroad Administration (FRA) and the Bureau

of Transportation Statistics (BTS). Geospatial data on the water network come from the U.S. Army

Corps of Engineers Geospatial Center and the BTS. We calculate instantaneous trade costs between

every county in the U.S. using the “fast marching method” algorithm based on the cost parameters

as assigned in (Allen and Arkolakis, 2014).
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Table B.1: Data Sources to Compute Local Tax and Transfer Rates

Category Source Note

Total Collected Revenues:
1) Tax Revenues
a) Individual

Federal NBER TAXSIM model
Accounts for the average marriage status, number of underage dependent members in the household,
wage, dividends, rents, social security compensations, other types of transfers to individuals,
property tax, and mortgage value.

State NBER TAXSIM model
Accounts for the average marriage status, number of underage dependent members in the household,
wage, dividends, rents, social security compensations, other types of transfers to individuals,
property tax, and mortgage value.

Local Census of Governments
Extracted from The Government Finance Database –
General Revenues Own-Sources (R04)

b) Corporate

Federal The White House Historical Tables
Table 2.1 – Local Corporate tax revenue is the product of federal corporate tax rate
(Total Federal Corporate Revenues/Total GDP) to local GDP

State Census of Governments
Extracted from The Government Finance Database –
Computed as the product of state corporate tax rate (Total State Corporate Revenues/Total GDP) to local GDP

Local Census of Governments
Extracted from The Government Finance Database –
General Revenues Own-Sources (R04)

c) Other

Federal The White House Historical Tables
Table 2.1 – Local Corporate tax revenue is the product of federal other tax rate
(Total Federal Other Revenues/Total GDP) to local GDP

State Census of Governments
Extracted from The Government Finance Database –
Computed as the product of state corporate tax rate (Total State Corporate Revenues/Total GDP) to local GDP

Local Census of Governments
Extracted from The Government Finance Database –
General Revenues Own-Sources (E002)

2) Social Security Bureau of Economic Analysis (BEA) Dataset CAINC4, variable 61 & 37

3) IG Transfers Census of Governments
Extracted from The Government Finance Database –
Total IG Expenditures (E02)

4) Net Debt
Federal St. Louis FRED First difference in Total Debt Outstanding net of Total Interests on Debt weighted by local GDP share

State Census of Governments
Extracted from The Government Finance Database –
First difference in Total Debt Outstanding (D01) net of Total Interests on Debt (E010) weighted by local GDP share

Local Census of Governments
Extracted from The Government Finance Database –
First difference in Total Debt Outstanding (D01) net of Total Interests on Debt (E010)

Total Spendings:

1) Local public goods Bureau of Economic Analysis (BEA) Dataset CAINC2, variable 83
2) IG Transfers Census of Governments Extracted from The Government Finance Database – Total IG Revenues (R31)
3) Individual Transfers Bureau of Economic Analysis (BEA) Dataset CAINC35, variable 2000
4) Tax credits Bureau of Economic Analysis (BEA) Dataset CAINC4, variable 5000
5) Local Administration

Federal Bureau of Economic Analysis (BEA) Dataset CAINC6n, variable 2001 & 2002
State Bureau of Economic Analysis (BEA) Dataset CAINC6n, variable 2011
Local Bureau of Economic Analysis (BEA) Dataset CAINC6n, variable 2012
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Migration costs. To measure m2(r)—the time-invariant, exogenous migration costs—we build a

balanced origin-destination matrix for the years 1990–2018 using the IRS’s county-to-county migration

data. For each county, we proxy the number of migrants with the number of exemptions in the tax

returns. We then regress the log number of migrants, coming or leaving, on origin-destination fixed

effects.

In our main estimation, we employ an inverse hyperbolic sine transformation to account for the

absence of bilateral migrations flows (Bellemare and Wichman, 2020). However, we acknowledge the

difficulty of identifying average treatment effects as percentage effects ignoring the baseline units (Chen

and Roth, 2022; Mullahy and Norton, 2022). Nonetheless, regressing untransformed migration flows

or shares of migration flows to local populations on origin-destination fixed effects would not unskew

our main outcome variable. We are still interested in capturing the decreasing returns of migration

costs. In this case, Chen and Roth (2022) suggest explicitly taking a stand on how we value the

relative importance of the extensive margin relative to the intensive margin.

In the present case, in which we want to relate migration patterns to origin-destination fixed

effects, assessing the relative importance of each margin is a challenging exercise.22 However, we

follow Chen and Roth (2022) in explicitly defining two alternative measures for m2(r). In the first

one, we crudely set log(y) if y > 0 and log(y) = 1 if y = 0. In the second one, we replace log(y) with

the negative of the percentage change between the average number of non-migrants and the average

number of migrants if y = 0. Both alternative measures produce m2(r) distributions that highly

correlate with our main specification—99.99% and 99.32%, respectively. These alternative measures

also yield geographic distributions similar to the one in Panel (b) of Figure3.

We use origin-destination fixed effects as our goal is to recover the impact of time-invariant factors

between counties of origin and destination. These fixed effects will capture the influence of exogenous,

first-nature elements (such as geographic distance, topography, and average temperature differences)

and historical connections on mobility. Larger values of the origin-destination fixed effects imply

smaller migration costs.

We then derive the weighted mean of these fixed effects by county of origin (respectively, desti-

nation) weighting by area of the county of destination (respectively, origin), after normalizing them

relative to staying in the same county. Finally, we take the additive inverse and normalize this vector

to have a minimum of 1 (see equation (5)) to capture exogenous migration costs. This procedure

22One could argue that migration patterns inside a country relate mostly to how personal endowments (such as
education, social ties, and income) dominate migration costs. In absolute, there are no migration barriers inside a
country (e.g., as a formal border) that would systematically prevent migration flows.
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Table B.2: m2(r) Correlations with Decadal Net Migration Rates

Average (1950-2010) 1950 1960 1970 1980 1990 2000

ρ(m2(r)) -0.4257 -0.5141 -0.4046 -0.2199 -0.3338 -0.1587 -0.2047

Notes: This table displays the recovered m2(r) migration costs with the decadal net migration rates measured in
Winkler et al. (2013). The net migration data were retrieved from the Net Migration for U.S. Counties project.

leaves us with a single, county-specific, normalized migration costs measure for both migration inflows

and outflows. As shown in Figure B.3, these two measures have the merit of being almost perfectly

symmetric (correlation of 0.9847). Taken together, this supports Desmet et al. (2018)’s assumption

of symmetric mobility costs in simplifying the dynamic mobility decisions to a sequence of static

decisions.

Figure B.3: Symmetry of Migration Costs

We set m2(r) to correspond to the recovered migration inflow costs. Using data from Winkler

et al. (2013), we show in Table B.2 that these migration costs correlate negatively with net migration

rates (i.e., migration inflow rates net of migration outflow rates). As expected, on average, the larger

the migration costs, the lower the net migration rates. Note that the correlation’s sign is the same for

all decades since 1950 but the amplitude of the correlation varies across time. Correlations between

m2(r) and net migration rates have been smaller in recent decades. This pattern indicates that time-

invariant components between locations, such as Euclidean distance, may have become less stringent

for migration flows over time.
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Synthetic hurricane paths. To calculate synthetic hurricane paths for the years 2001–2081 in the

United States, we use the STORM dataset (Bloemendaal et al., 2020). The data use historical data

from the IBTrACS repository to predict more than 10,000 hurricane synthetic tracks and corresponds

to current climate conditions. Figures B.4 and B.5 show examples of the distribution of on- and

off-cycle hurricanes in this dataset.

Figure B.4: On- vs. Off-Cycle Synthetic Hurricane Tracks over 100, 250, 500, and 1,000
years

B.2.2 Amenities, Productivities, and Utility Levels

In estimating migration costs directly from observed migration patterns and recovering utility levels

ut(r) from the structure of the model, our approach deviates from the approach in the literature so far.

For example, Desmet et al. (2018, 2021) use data on subjective well-being from the Gallup World Poll,

and Cruz and Rossi-Hansberg (2021) use data on the Human Development Index to recover ut(r).

Our alternative method has two advantages. First, it limits the degrees of freedom in inferring ut(r)

at the local level and is more robust to measurement error. Second, by using an external dataset, we
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Figure B.5: On- vs. Off-Cycle Synthetic Hurricane Radius of Maximum Winds over 80
Years

ensure not to use the same information (e.g., local GDP) twice in measuring ut(r).

To calculate a measure of subjective well-being, we break down national first-moment statistics

from the Gallup World Poll into county-level estimates. We follow the literature on the relationship

between subjective life satisfaction and income (Frey and Stutzer, 2002; Kahneman and Deaton, 2010;

Deaton and Stone, 2013) showing that life satisfaction positively correlates with relative income within

a cohort. We compute county-level human development indices using data on local GDP from the

BEA, life expectancy from Dwyer-Lindgren et al. (2017, 2022), and education spending per individual

under 18 years old from the Census of Governments. We then apply the Human Development Index

methodology to these three dimensions to retrieve local county estimates.

Figure B.6 shows that despite using an alternative strategy, our recovered measure of ut(r) posi-

tively correlates with subjective well-being (ρ = 0.2819) as in Desmet et al. (2018, 2021) and with the

Local Human Development Index (ρ = 0.2325) as in Cruz and Rossi-Hansberg (2021).

B.2.3 Impact of Natural Disasters and Election Cycle

Given the procedure described in Section 6.4, Figure B.7 documents the impact of natural disasters

and the electoral cycle on amenities, productivity, tax, and transfer rates.
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Figure B.6: Comparison of ut(r) Levels with Local Human Development Index and Life
Satisfaction Levels

Notes: This figure plots the correlation between the recovered ut(r) from Section 6.3 and the local human development
index (left) and life satisfaction (right) levels. Each bin corresponds to a percentile. The correlation between ut(r) and
the human development index is 0.2325, and the correlation between ut(r) and the life satisfaction levels is 0.2819.

Figure B.7: On- vs. Off-Cycle Hurricane Treatment Effect on Fundamental Amenities,
Productivities, Transfer, and Tax Rates

Notes: This figure plots the estimates of the event study and corresponding 95% confidence bands of different specifica-
tions of equation (1). The dependent variables are the log of fundamental amenities, the log of fundamental productivities,
and transfer and tax rates. Event variables are dummies equal to 1 for a hurricane. The regression model includes county
and year fixed effects. Standard errors are clustered at the county level.
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B.2.4 In-Sample Performance

Figure B.8 shows that our quantified model reproduces the population and wage dynamics between

2001 and 2019 using our model-implied impact functions.

Figure B.8: In-Sample Performance

Notes: The upper figure plots our main estimates of the impact of on- and off-cycle hurricanes on population and wages,
both in the baseline simulation and in the data. Each average treatment effect in the data is insignificantly different from
its simulation counterpart. The bottom figures plot the correlation between predicted and actual population (left) and
wages (right) over the 2001–2019 period. Each bin corresponds to a percentile. The correlation between the predicted
and actual population levels is 0.997, and the correlation between predicted and actual wages is 0.869.

B.3 Counterfactual Analysis

In this part of the appendix, we report sensitivity checks for our counterfactual analysis from Section

7 of the paper. Further, we show that our structural model implies a more critical role for post-

disaster policies in shaping the aggregate economy than suggested by a simple back-of-the-envelope

calculation. Finally, we highlight the importance of the amenity and productivity channel for our

results. As in Section 7, we contrast the current electoral-cycle-driven post-disaster policy with a

counterfactual scenario without these impacts. However, in two alternative baseline scenarios, we now
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remove the policy’s post-disaster transfers’ transformation rate into local amenities or their impact on

local productivity.

B.3.1 Sensitivity Checks

To assess the sensitivity of our results, we also report in Table B.3 aggregate effects for alternative

parameter constellations of migration and trade elasticities. While remaining inside the parameter

range where we find an equilibrium with our numerical approach, we slightly increase the migration

elasticity (Ω = 0.4 and Ω = 0.45).23 Further, we allow θ to take the 8.3 value estimated by Eaton

and Kortum (2002) and the 4.6 value estimated by Simonovska and Waugh (2014). It is evident from

Table B.3 that aggregate output declines in all cases regardless of the precise parameter constellation.

The loss tends to be stronger the smaller Ω is. More negligible levels of Ω imply weaker congestion

forces and thus larger migration flows. Those migration flows from more to less productive regions, in

turn, translate into lower aggregate productivity. This channel becomes even more paramount when

the trade elasticity θ is lower.

Table B.3: Sensitivity: Aggregate Effects under Different Parameter Settings

θ Ω ∆ Welfare ∆ Real GDP ∆ Population of
On-Cycle counties

in percent in percent in percent

4.6 0.5 0.16 -1.09 9.56

6.5 0.5 0.17 -1.17 13.06

8.3 0.5 0.18 -1.21 15.36

6.5 0.4 0.16 -1.18 15.37

6.5 0.45 0.17 -1.17 14.12

Notes: This table reports percentage changes in the present discounted
value of welfare and real GDP and the percentage change in the population
of on-cycle regions under different parameter values of θ and Ω given the
current post-disaster policies compared to the counterfactual scenario.

B.3.2 A Back-of-the-Envelope Calculation

We perform a simple back-of-the-envelope exercise that indicates the size of the post-disaster transfers

allocated to counties hit by on-cycle hurricanes between 2001 and 2019. Doing so allows us to calculate

23Our baseline quantification satisfies Condition 1 stated above. It assumes higher static dispersion forces than
agglomeration forces at the margin and ensures the existence and uniqueness of equilibrium. Given our baseline pa-
rameterization, the county-level estimates of migration elasticities 1/Ω = 2 for the United States of Monte et al. (2018)
provide an upper bound, where we find an equilibrium with our numerical procedure.
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the extent of transferring tax revenues across regions during the electoral cycle. The present analysis

ignores the causal population sorting impact and its implied spillovers on the aggregate government

budget (e.g., tax revenue). In the main text, we extend this back-of-the-envelope exercise by con-

ducting counterfactual exercises with a dynamic spatial general equilibrium model to overcome the

limitations of this simple calculation.

Our estimates of Table 1 show that transfer rates increase by an average of 3.12 percentage points

after an on-cycle hurricane. At the same time, we cannot rule out the absence of a response in the

off-cycle case. Given the same post-disaster treatment across the electoral cycle, holding prices, and

population fixed, we should see 3.12 percentage point less post-disaster transfers allocated during

on-cycle years. We can take the difference between the actual post-disaster transfers and this coun-

terfactual with equal post-disaster assistance during on- and off-cycle years. For each county hit by

an on-cycle hurricane during 2001–2019, we then arrive at the implied redistribution of post-disaster

transfers arising from the electoral-cycle-driven post-disaster policy. With this information, we calcu-

late the total amount of tax revenue redistribution to regions affected by on-cycle hurricanes. This

estimate suggests that the policy in the United States resulted in direct transfers of approximately

$289 billion (in 2001 dollar values) across regions (or $53.68 in average annual post-disaster transfers)

between 2001 and 2019.

This back-of-the-envelope calculation, however, has several important caveats. First, it only mea-

sures the direct redistribution that arises from the higher post-disaster transfers during on-cycle years.

It does not capture the general equilibrium effects of natural disasters and post-disaster policies that

affect economic activity locally and elsewhere. The post-disaster policy increases local public goods

provision and net-of-tax earnings by providing higher disaster transfers during on-cycle years despite

similar disaster exposures, thus providing further welfare gains to the local population in regions hit

by a natural disaster during on-cycle years.

Second, the calculation takes the existing spatial distribution of economic activity as given and

may overstate some consequences of eliminating the higher post-disaster transfers during on-cycle

years. Finally, dynamic growth effects are associated with changes in the spatial distribution of

economic activity in response to post-disaster transfers, and therefore focusing on the impact of the

electoral cycle on post-disaster transfers alone understates the aggregate consequences of the post-

disaster policy. Addressing these issues requires moving to a dynamic spatial model with post-disaster

policies, which we do in the main text. Ultimately, our structural model implies a more critical

role for post-disaster policies in shaping aggregate welfare than the $53.68 billion suggested by the
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back-of-the-envelope calculation.

B.3.3 Amenity Transformation and Productivity Distortion

The transformation of amenities and productivity distortion channels are essential for population

sorting and aggregate dynamics. We run two alternative baseline scenarios to help us understand the

respective importance of each channel. In the first alternative scenario, we simulate the population

sorting patterns and the aggregate effects of removing the post-disaster transfers’ transformation rate

into local amenities. More specifically, we set the parameter φāt(r) to zero and adjust the fundamental

local amenity term to keep the value unchanged from 2001. Intuitively, in this alternative baseline

scenario, local governments cannot use the higher post-disaster transfers to significantly improve in-

frastructures and thus enhance the local quality of life.

In the second additional scenario, we keep post-disaster transfers and their transformation rate into

local amenities as in the baseline model. However, we modify the extent of productivity effects in the

adjustment process of the local economy. Specifically, we reduce the impact of electoral-cycle-driven

post-disaster policies on local productivity from −38% to 0%. Intuitively, in this second alternative

baseline scenario, the post-disaster policies do not distort the local economy. We then compare these

alternative baseline experiments to our main counterfactual scenario in which the impact of natural

disasters on fiscal transfers, amenities, and productivity are identical across the electoral cycle.

We first depict ratios in local population size after 80 years in our baseline scenario without the

amenity transformation after an on-cycle hurricane (Panel (a) of Figure B.9) and their aggregate effects

on productivity, GDP, and welfare (Panel (b)) relative to our counterfactual without any electoral cycle

effect. Compared to our main counterfactual scenario, the population declines in exposed coastal

areas. Despite increased fiscal transfers and reduced congestion, no exogenous improvements made

in amenities could compensate for the significant local productivity loss (−37.73%, on average). In

our main results, described in Section 7, we find that the current electoral-cycle-driven post-disaster

policies increase on-cycle county populations by up to 13.06% in 80 years. In comparison, it would

be only 1.15% without the local quality of life improvements (Figure B.9). At the same time, highly

productive areas still bear the cost of this fiscal redistribution, making them slightly less attractive

relative to other regions and therefore losing populations. Previously uncrowded places and small

urban centers, i.e., neither coastal nor over-congested cities, traditionally net recipients of the fiscal

system, become appealing.

While the aggregate productivity is lower in this first alternative baseline scenario compared to
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our main counterfactual, the impact on aggregate GDP remains mildly unchanged. The aggregate

productivity loss would still be 0.74%, whereas GDP would increase by 0.05% without improvements in

local quality of life (see Panel (b) of Figure B.9). This result occurs because the labor force’s relocation

out of both exposed regions and large productive cities dampens the productivity distortions caused by

the post-disaster intervention. In other words, fewer workers live in less productive areas, so the local

effect on fundamental productivity is not fully capitalized into aggregate GDP. At the same time,

this labor force massively relocates to less productive counties, canceling any mild negative effect

that would have affected aggregate production otherwise. Aggregate welfare increases as very dense

counties are decongested at no extra cost; i.e., the aggregate output remains unchanged. Specifically,

welfare gain would reach a sizable 0.19% without the local quality of life improvements (see Panel (b)

of Figure B.10).

We now illustrate changes in local population size after 80 years in our baseline scenario without

the productivity distortions after an on-cycle hurricane (Panel (a) of Figure B.10) and their aggregate

effects on productivity, GDP, and welfare (Panel (b)) relative to our counterfactual without any

electoral cycle effect. Compared to our main counterfactual scenario, the population sorts even more

into exposed coastal areas as, on top of increased fiscal transfers, no local productivity losses tone

down the improved amenities (+8.37%, on average). On-cycle county populations would increase by

20.89% without the productivity distortion after on-cycle hurricanes (Figure B.10). In this scenario,

all non-coastal counties, and even more highly productive areas that still bear the cost of this fiscal

redistribution, lose population to the benefit of these more exposed counties (Figure B.9).

In this alternative scenario, aggregate productivity is slightly lower than in our main counterfactual,

but the impact on aggregate GDP is highly damaging. The aggregate productivity loss would only be

0.26%, and the loss of real GDP would be 1.61% after 80 years without local labor markets distortions

(see Panel (b) of Figure B.10). This new result happens because the labor force’s relocation into

exposed regions decongests highly productive areas. Fewer workers live in dense, productive regions,

while less crowded coastal regions become endogenously more productive, partially compensating for

the aggregate productivity loss caused by population sorting. Similarly, the output losses caused by

the reallocation of the labor force from dense, productive areas further dominate the output gains from

moving into exposed coastal areas, causing a sizable aggregate GDP differential after 80 years. In turn,

aggregate welfare would have increased significantly absent endogenous sorting responses. Instead, the

solid exogenous amenity improvements brought by the post-disaster efforts after on-cycle hurricanes are

compensated by a significant endogenous economic contraction, causing aggregate welfare to decline
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mildly by 0.02%.

In our first alternative baseline scenario (i.e., without amenity improvements), welfare increases

because endogenous amenity improvement due to endogenous population sorting occurs at no GDP

loss. In our second alternative baseline scenario (i.e., without productivity distortion), welfare remains

almost unchanged because exogenous amenity improvements compensate for endogenous output losses

due to endogenous population sorting. In other words, we observe improved aggregate quality of life in

either case. However, the endogenous sorting pattern caused by local amenity improvements impacts

more substantially large productive areas, causing sizable aggregate output losses.
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(a) Population Size after 80 Years: Baseline (w/o Amenity Transformation) vs. Counterfactual

(b) Percentage Changes in Aggregate productivity, Real GDP, and Welfare: Baseline vs. Counterfactual

Figure B.9: Aggregate Changes of Electoral-Cycle-Driven Post-Disaster Polices

Notes: The map in Panel (a) depicts the ratio in local population size between current post-disaster policies and a
counterfactual scenario without electoral-cycle-driven post-disaster policies’ amenity transformation after 80 years of
simulation. The warm color represents more households in the baseline scenario after 80 years relative to the counter-
factual. Panel (b) depicts the changes in aggregate productivity, real GDP, and welfare given the current post-disaster
policies compared to the counterfactual scenario.
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(a) Population Size after 80 Years: Baseline (w/o Productivity Distortion) vs. Counterfactual

(b) Percentage Changes in Aggregate Productivity, Real GDP, and Welfare: Baseline vs. Counterfactual

Figure B.10: Aggregate Changes of Electoral-Cycle-Driven Post-Disaster Polices

Notes: The map in Panel (a) depicts the ratio in local population size between current post-disaster policies and a
counterfactual scenario without electoral-cycle-driven post-disaster policies’ productivity distortion after 80 years of sim-
ulation. The warm color represents more households in the baseline scenario after 80 years relative to the counterfactual.
Panel (b) depicts the changes in aggregate productivity, real GDP, and welfare given the current post-disaster policies
compared to the counterfactual scenario.
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