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Abstract 

This paper assesses the strength of productivity spillovers nonparametrically in a 
data-set of 12 industries and 231 NUTS2 regions in 17 European Union member 
countries between 1992 and 2006. It devotes particular attention to measuring 
catching up through spillovers depending on the technology gap of a unit to the 
industry leader and the local human capital endowment. We find evidence of a non- 
(log-)linear relationship between the technology gap to the leader as well as human 
capital and growth. Spillovers are strongest for units with a small technology gap to 
the leader and with abundant human capital. 

 
 

 

 

 

 

   



1 Introduction

A large body of empirical work in macroeconomics emphasizes the role of
total factor productivity (TFP) spillovers through knowledge diffusion for
catching up and convergence. Nelson and Phelps (1966) suggested that the
extent of knowledge spillovers depends on two factors, the distance to the
technological frontier (the technology gap) and an economic units’ knowl-
edge stock or human capital endowment. There is now broad evidence on
the importance of either one of the two for catching up and convergence.
Virtually all of this evidence assumes a parametric if not a (log-)linear re-
lationship between spillovers and TFP growth. Little is known about the
appropriateness of this assumption and the actual form of the relationship.

For instance, Benhabib and Spiegel (1994) identified two roles of human
capital levels for economic growth in a large cross section of countries in
1965-1985: for steady-state growth of TFP and for catching up, i.e., the ab-
sorption of spillovers from the technology leader. Griffith, Redding, and van
Reenen (2004) assessed the determinants of TFP growth in a panel of OECD
countries and manufacturing industries in 1974-1990. Their findings suggest
that human capital as well as R&D levels affect TFP growth and conver-
gence. Kneller and Stevens (2006) found further support along those lines in
a panel of industries and OECD countries in 1973-1991, though suggesting
that human capital was more robust a driver of spillovers than R&D in their
data.1 In all of the just-mentioned work, a parametric relationship between
human capital and catching up was assumed.

The goal of this paper is to apply nonparametric rather than parametric
estimation techniques in assessing the functional form of the relationship
between the technology gap and human capital for TFP growth and catching
up. This is accomplished in a (panel) data-set on 231 NUTS2 subnational
regions (of 17 European Union member countries) and 12 industries over the
period 1992-2006.2 The findings are aligned with ones in earlier work to the

1At the level of the firm, Griffith, Harrison, and van Reenen (2006) found evidence
in support of R&D as a key determinant of catching up in TFP growth. Along different
lines, the studies by Coe and Helpman (1995) and Coe, Helpman, and Hoffmaister (1997)
emphasized the role of international trade and foreign direct investment as transmission
channels of international R&D spillovers (see Keller, 2004, for a survey of this and related
work).

2NUTS2 is a classification adopted by the statistical office of the European Union,
Eurostat. It refers to regions of a size of mn 0.8-3 inhabitants all over the European
Union.
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extent that the speed of convergence is positively related to the size of the
TFP gap on average, and that the speed of convergence towards the TFP
leader is positively related to a unit’s level of human capital on average. Yet,
the semi- and nonparametric evidence reveals large areas in technology-gap
and human-capital-endowment space where monotone convergence is absent
and leapfrogging or low-growth traps exist. Standard, monotone convergence
in TFP growth to the industry leader as suggested by earlier, parametric work
applies only to part of the region-industry units in the data.

The nonparametric estimator explains more than twice as much of the
variation in the data on TFP growth than the parametric estimator in the
data at hand. The deviation of the predictions from the data are on average
much smaller for the nonparametric estimator and particularly so where the
where the gap to the industry leader is large (i.e., for industry-region dyads
that are in the poverty trap). Moreover, the nonparametric estimator reveals
a much greater variance in the marginal effect of human capital across regions
and industries. Hence, allowing for flexible functional forms when assessing
convergence processes and spillovers appears desirable and turns out to be
qualitatively and quantitatively important.

The remainder of the paper is organized as follows. Section 2 derives a
flexible empirical model for inference about the closure of technology gaps
within and across industrial boundaries. Section 3 discusses estimation is-
sues and outlines semi-parametric and nonparametric estimation strategies.
Section 4 summarizes the data and Section 5 the corresponding results. The
last section concludes with a summary of the key findings.

2 Data

The empirical analysis in this paper involves two types of variables, one
relating to TFP (a region’s gap to the industry leader in an initial period
as well as its average annual growth) and one relating to human capital
endowments. Since TFP is not observed directly, we follow Griffith, Redding,
and van Reenen (2004) for measurement.

2.1 Construction of TFP indices

Define ∆ lnYit ≡ lnYit − lnYit−1 as the log change in region-industry dyad
i’s value added in real terms between periods t− 1 and t, ∆ lnLit ≡ lnLit −
lnLit−1 as the log change in labor, ∆ lnKit ≡ lnKit − lnKit−1 as the log
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change in capital stock, and α̃it ≡ 0.5(αit + αit−1) as the average cost share
of labor in value added in periods t and t − 1. Then, the log change in i’s
TFP can be defined as

TFP growthit ≡ ∆ lnAit = ∆ lnYit − α̃it∆ lnLit − (1− α̃it)∆ lnKit. (1)

Use ln V̄it to denote the geometric mean of a generic variable lnVit within
an industry and a year across all regions,3 D lnVit ≡ lnVit − ln V̄it to denote
the i’s deviation from ln V̄it in the same industry and year t, D lnVit ≡
D lnVLit − D lnVit to denote the difference between the sector-year specific
technology leader (L) and unit i in D lnVit, and σit ≡ 0.5(αit + ᾱit). Then,
we may define

TFP gapit ≡ D lnAit = D lnYit − σitD lnLit − (1− σit)D lnKit. (2)

Hence, information on the cost share of labor in value added, αit, on value
added in real terms, Yit, on employment, Lit, and on the capital stock, Kit

is required to measure TFP growthit and TFP gapit.

2.2 Data sources

Information about αit, Yit, Lit, and Kit is based on data from Cambridge
Econometrics. Lit and Yit are measured directly with 2006 being the base
year for the deflator. Kit is calculated by using the perpetual inventory
method, using data on gross fixed capital formation, Iit, assuming a de-
preciation rate of 15%, δ = 0.15 (see Harrigan, 1999), and an initial cap-
ital stock of Ki,1991 =

∑1985
t=1980 Iit, so that Kit = (1 − δ)Ki,t−1 + Iit for all

t = 1992, ..., 2006. As in Harrigan (1997) and Griffith, Redding, and van
Reenen (2004), we exploit the properties of the translog production function
to smooth region-industry specific labor shares αit, which are obtained as
predicted values of a regression of the observed labor shares on a country-
industry-specific fixed effect and the log of the capital-labor ratio, whose
parameter is industry-specific. Data on regional human capital stocks Hit

as one measure of absorptive capacity are based on the European Union’s
Labour Force Survey and the European Values Study. We employ informa-
tion on the share of workers with at least secondary education which varies
across NUTS2 regions but not across industries. Overall we have data for 10

3Note that ln V̄it carries an index i since i refers to region-industry dyads and the
geometric mean is industry(-year)-specific.
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industries across 231 regions and 15 years such that our estimates correspond
to n = 34, 650 observations.4

3 Empirical framework

3.1 An empirical model of total factor productivity
growth and convergence

A general, semi- or nonparametric catching up process for TFP growth of
region-industry dyad i at time t in the spirit of Benhabib and Spiegel (1994)
and Griffith, Redding, and van Reenen (2004) may be formulated as

∆ lnAit = f(Xit−1) + uit, where Xit−1 = (Hit−1,D lnAit−1) . (3)

Of course, the process in (3) is not consistent with convergence (e.g., non-
leapfrogging) in general terms. However, there will be convergence to the
same steady-state – an absence of leapfrogging and of no-growth regions at a
high TFP gap – as long as ∆ lnAit increases monotonically with D lnAit−1.
The latter should not be expected to generally emerge empirically.5 This
paper’s main interest is to reveal the functional form of f(Xit−1), to contrast
the findings with a parametric form as assumed in earlier work on the matter,
and to outline conclusions for economic policy and future research.

3.2 Semi- and nonparametric estimation of technology
spillovers

In this subsection, we are concerned with the specification of f(Xit−1). By
considering convergence forces in TFP as a potentially nonlinear function of
two arguments, the technology gap to the industry leader, D lnAit−1, and

4Our data-set covers the following industries following the NACE classification: Food,
beverages and tobacco; Textiles and leather etc.; Coke, refined petroleum, nuclear fuel
and chemicals etc.; Electrical and optical equipment; Transport equipment; Other man-
ufacturing; Hotels and restaurants; Transport, storage and communications; Financial
intermediation; Real estate, renting and business activities.

5For instance, it is well known that some countries are locked at least locally (in time)
in what macro-economists call a poverty trap so that there is divergence between richer
and poorer economies (see, e.g., Sachs, McArthur, Schmidt-Traub, Kruk, Bahadur, Faye,
and McCord, 2004).
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human capital endowment, Hit−1, we are interested in estimating semipara-
metric and fully nonparametric models about f(Xit−1).

Semiparametric estimation of technology spillovers:

In semiparametric models, we allow f(Xit−1) to be fully nonparametric about
D lnAit−1 but parametric about Hit−1. A partially linear model with no in-
teraction of Hit−1 and D lnAit−1 is

∆ lnAit = βHHit−1 + g(D lnAit−1) + uit. (4)

We estimate (4) by applying a differencing approach as proposed by Di-
Nardo and Tobias (2001) and Yatchew (2003). For this, we sort the data by
ascending values of D lnAit and calculate first differences of all the sorted
data. Hence, we replace every generic variable Vit in (4) by its differenced

counterpart, Ṽit ≡ Vit − Vi−1,t. By this strategy, ˜g(D lnAit−1) is differenced

out, and we can estimate βH by regressing ∆̃ lnAit on H̃it−1. Then, we

use ∆ lnAit − β̂HHit−1 as a new dependent variable and estimate the non-
parametric component g(D lnAit−1) by way of local linear regression based
on a radially symmetric Epanechnikov kernel Kb(·) with bandwidth b. The
optimal bandwidth b∗ is chosen from a leave-one-out cross-validation proce-
dure as proposed in Fan and Gijbels (1996) and Härdle, Müller, Sperlich,
and Werwatz (2004). Confidence intervals of the local point estimates are
computed via the bootstrap procedure suggested by Yatchew (2003).6 To
increase the efficiency of the estimator we perform a third-order differencing
which follows the procedure described above but employs optimal differenc-
ing weights.7 One important feature of the semiparametric approach in (4)

6One adds the residuals from an under-smoothed estimation of g(D lnAit−1) to the
predictions of the nonparametric component from an over-smoothed local linear regression
to construct a bootstrap sample from which one resamples. As suggested by Yatchew
(2003, p.161), we use the 0.9 and 1.1-fold of the optimal bandwidth for under- and over-
smoothed local linear regressions, respectively. For each draw from the bootstrap sample,
we estimate local linear regressions using b∗ which obtains a distribution of g(D lnAit−1).

This distribution is merged with a distribution of β̂H to obtain a distribution of ∆ lnAit.
The 0.025 and 0.975 quantiles of that distribution determine the 95% confidence interval.

7With P th-order differencing, any generic variable Vit is differenced as Ṽit ≡∑P
p=0 wpVi−p,t, where the weights wp sum up to unity,

∑P
p=0 wp = 1, and optimal weights

are tabulated in Yatchew (2003, p.61). With the data at hand, first- and second-order dif-
ferencing turn out very similar to third-order differencing, but the latter yields the lowest
root mean squared error.
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is that the derivative of predicted outcome with respect to the technology

gap, ∂∆̂ lnAit

/
∂D lnAit−1, is independent of Hit−1 and vice versa unlike as

in earlier work.8

Nonparametric estimation of technology spillovers:

For fully nonparametric estimation of the model in (3), we employ a mul-
tivariate local linear estimator based on an Epanechnikov product kernel
KbH (Hit−1 −Hst−1)KbA(D lnAit−1 −D lnAst−1) with bandwidths bH and bA
(see Fan and Gijbels, 1996).9 The local linear regression model for all units
i in the neighborhood of unit s (3) employs

n∑
i=1

{∆ lnAit − (Xit−1 −Xst−1) β}2KbH (Hit−1−Hst−1)KbA(D lnAit−1−D lnAst−1).

(5)
The predictions for f(Xit−1) is based on this smoother, and its confidence
bounds are estimated by the same bootstrap procedure, using over- and
under-smoothing, as outlined above.10 Again, the optimal bandwidths bH
and bA are chosen from a leave-one-out cross-validation procedure. An im-
portant difference to the semiparametric approach is that in the fully non-

parametric framework ∂∆̂ lnAit

/
∂D lnAit−1 depends on Hit−1. Accordingly,

we utilize three-dimensional plots of ∂∆̂ lnAit

/
∂D lnAit−1 against D lnAit−1

and Hit−1 for illustration.

8It is advisable to estimate derivatives of nonparametric functions by utilizing higher-
order polynomial regressions for the derivative than for the level of the function. In general
an odd difference between the polynomial order of the level function and the derivative
function is preferable in terms of bias reduction (see Härdle, Müller, Sperlich, and Wer-

watz, 2004, p.99). We estimate ∂∆̂ lnAit

/
∂D lnAit−1 by employing a local quadratic

regressions for g(D lnAit−1) based on a radially symmetric Epanechnikov kernel and op-
timal bandwidth.

9Using a bivariate radially symmetric Epanechnikov kernel instead yields almost iden-
tical results.

10For estimation of ∂∆̂ lnAit

/
∂D lnAit−1, we employ a local quadratic regression in

H-D lnA-space.
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3.3 Results

In this section, we summarize the results of the semiparametric and nonpara-
metric empirical analysis by way of plots. For each estimator, there are two

plots, one for the level function ∆̂ lnAit (panel A) and one for the gradient

function ∂∆̂ lnAit

/
∂D lnAit−1 (panel B). With two estimators – a 3rd-order

differencing semiparametric model and a fully nonparametric model – this
results in two figures and, altogether, four panels. In all three-dimensional
plots we use the following coloring to illustrate significance at the 5% level:
dark-red for negative values of outcome (level or derivative) that are signifi-
cantly different from zero; light-red for negative values of outcome (level or
derivative) that are not significantly different from zero; dark-blue for pos-
itive values of outcome (level or derivative) that are significantly different
from zero at; light-blue for positive values of outcome (level or derivative)
that are not significantly different from zero;

– Figures 1 and 2 –

Semiparametric estimates:

The semiparametric results are qualitatively very similar between 1st, 2nd,
and 3rd order differencing (we only present 3rd order differencing results in

the interest of brevity) with regard to both the levels function ∆̂ lnAit =

f(Xit−1) and the derivative function ∂∆̂ lnAit

/
∂D lnAit−1. We focus on

third-differenced estimation results for robustness and efficiency reasons.
Moreover, β̂H based on (4) amounts to about 0.115 (at a robust standard
error of 0.004). Hence, the semiparametric estimates suggest that human
capital abundance allows region-industry dyads to entertain positive TFP
growth, even if the gap to the industry leader is small. Under human capi-
tal scarcity, regions may face negative TFP growth in spite of a big gap to
the industry’s technology leader. Both features work against mean reversion
(convergence). The highest level of TFP growth is predicted for the maxi-
mum level of human capital and an intermediate gap to the industry leader
(D lnAit−1 ' 3).

The (two-dimensional) estimate of ∂∆̂ lnAit

/
∂D lnAit−1 in Figure 1B

suggests the following conclusions. First, when starting with the smallest
gap to the technology leader and then raising the gap, the derivative func-
tion is positive and significantly different from zero at 5% up to a value of
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D lnAit−1 ' 2.4 or for about 64% of (region-industry) units with the smallest
gaps. These units significantly benefit from spillovers due to innovations by

the respective industry’s technology leader. Second, ∂∆̂ lnAit

/
∂D lnAit−1

is indistinguishably different from zero for about 33% of the units in the cen-
ter of the distribution of TFP gaps or in the interval D lnAit−1 ∈ (2.4, 6.5).

Third, ∂∆̂ lnAit

/
∂D lnAit−1 is positive and significantly different from zero

again for TFP gaps in the interval D lnAit−1 ∈ (6.5, 7) or for about 1.3%
of the units. The difference between the second and third segment points
to leapfrogging in that part of the distribution. Finally, the derivative
is not significantly different from zero (positive or negative) for values of
D lnAit−1 > 7. The latter points to a low-growth trap for about 1.7% of
the units. The non-monotonicity of the spillovers with respect to the TFP
gap is also evident when focusing on the fractions of units where a posi-
tive significant point estimate for the gradient is found. The plot in Figure
2 suggests that a positive, statistically significant TFP-growth gradient is
more likely at either a quite small or at a sufficiently large gap to the leader.
Overall, the semiparametric estimates suggest that the relationship between
the gap to the leader and TFP growth is not monotonic, a salient feature
that is concealed in previous parametric work on TFP growth. Moreover,
about 34% of the industry-region-dyads do not display convergence to the
technology leader in a large region in D lnA-space with a medium-to-large
TFP gap, according to Figure 1B, when applying 95% confidence bounds.
Finally, along the whole range of productivity gaps sufficient levels of human
capital can ensure significantly positive TFP growth rates.

Nonparametric estimates:

Let us now relax the assumption that ∂∆̂ lnAit

/
∂D lnAit is independent

of Hit−1 through fully nonparametric estimation. The corresponding results
are illustrated in Figure 3 and can be summarized as follows. First, the

estimated levels function ∆̂ lnAit = ̂f(Xit−1) is unsurprisingly similar to its
semiparametric counterpart. The nonparametric estimates are somewhat less
smooth and somewhat less efficient (see the larger size of light-colored regions
in Figure 3A relative to Figure 1A). While having not too big of a technol-
ogy gap to the leader is best for convergence in general and independent of
human capital endowments, convergence to the leader is more likely possible
with a medium-high level of human capital as the technology gap rises. The
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gradient plot in Figure 3B suggests that significant convergence to the leader
(indicated by dark-blue dots) surfaces more frequently at medium-high levels
of Hit−1.

The relative importance of a technology gap to the industry leader and
of human capital for convergence can be visualized by plotting the fractions
of units at certain levels of a technology gap or human capital where the
point estimate for the gradient is positive and significant. The corresponding

fractions for ∂∆̂ lnAit

/
∂D lnAit−1 across different levels of D lnAit−1 and

Hit−1 are displayed in Figures 4A and 4B. Again, a positive, statistically
significant TFP-growth gradient is more likely at either a quite small or a very
large gap to the leader. Moreover, the fraction of positive significant values

of ∂∆̂ lnAit

/
∂D lnAit−1 rises with human capital endowments according to

Figure 4B. The latter indicates a positive cross derivative which reinforces the
importance of human capital in addition to its direct effect on TFP growth.
There is evidence of a lack of catching up at intermediate levels of technology
gaps and at scarce human capital endowments.

An analysis of variance of an indicator variable which is unity for positive
significant catching up and zero else reveals the following. First, only about
one-tenth of the variation in this variable is explained by industry-specific
and region-specific indicators, with the two being about equally important.
Hence, there is relatively little concentration of TFP spillovers across specific
industries or specific regions on average. The fraction of significantly positive
spillovers varies across industries with values between 0.161 (Transport equip-
ment) and 0.470 (Other manufacturing) being centered around an average
of 0.319. The fraction of significantly positive spillovers varies across regions
with values between 0.075 (Észak-Alföld in Hungary) and 0.674 (Lancashire
in the United Kingdom).

– Figures 3-4B –

The nonparametric estimates reveal a larger variation in the role of Hit

compared to a parametric counterpart in the spirit of Griffith, Redding, and
van Reenen (2004), where ∆ lnAit is (log-)additive in a constant, Hit−1,
D lnAit−1, and an interaction Hit−1D lnAit−1. While such a parametric
approach yields for our sample an average marginal effect of about 0.088
for Hit−1 the fully nonparametric approach predicts only about 0.043. The
standard deviation of the marginal effect of Hit−1 is 0.007 and 0.723 in the
parametric and the nonparametric model, respectively. Either approach is
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relatively parsimonious, since TFP growth is explained by just two factors
of influence. Yet, the parametric approach explains about 2.7% of the vari-
ation in ∆ lnAit, while the fully nonparametric framework explains 6.6%,
which is more than twice as much. On average, the nonparametric estima-
tor exhibits smaller residuals than the parametric estimator in the data at
hand, indicating that the parametric assumption is violated. In particular,
the nonparametric estimator outperforms the parametric approach where the
technology gap to the leader is large, hence, for units in the non-convergence
trap according to Figures 4A-4B.11

4 Conclusions

This paper studies the role of the technology gap and absorptive capacity of
regions and industries for catching up. The functional relationship between
TFP growth and the technology gap and human capital endowments fea-
tures considerable nonlinearities and even non-monotonicities that can typ-
ically not be captured by parametric specifications. The estimates suggest
that spillover effects from the technological leader are strongest to regions
within an industry where the technology gap is either quite small or suffi-
ciently large, at least in Europe. For a medium-sized technology gap, we
do not identify positive spillovers. This provides evidence for leapfrogging
at large to medium-sized technology gaps to the industry leader. Moreover,
we find evidence of a low-growth trap at very large technology gaps to the
leader. Regarding the effects of human capital in facilitating spillovers from
the technology leader the nonparametric estimation reveals a much bigger
variation at a much smaller average than the conventional approach. This
appears particularly important when thinking of returns to human capital
across regions and industries and the funding of education in federal unions
that operate under financial constraints.

11This statement is based on the following procedure. Define a binary variable which is
unity whenever the residuals of the parametric estimator are at least as large in absolute
value as the ones of the nonparametric estimator. Regressing this binary indicator on the
technology gap to the leader, D lnAit−1, in a linear model yields a positive constant of
0.372 (at a robust standard error of 0.004) and a positive coefficient of 0.028 (at a robust
standard error of 0.001). Regressing the binary indicator on human capital endowments,
Hit−1, in a linear model yields a positive constant of 0.424 (at a robust standard error of
0.010) and a coefficient of 0.027 (at a robust standard error of 0.017).
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Tables and Figures

Figure 1: Semiparametric Spillovers - Third Order Differencing

A. TFP Growth

B. TFP Gradient

Note: The estimates base on a sample of 41,580 observations. Panel A illustrates the estimates
for the level ∆ lnAit where we use the following coloring: dark-red for for negative values of
outcome that are significantly different from zero at 5%; light-red for negative values of outcome
that are not significantly different from zero at 5%; dark-blue for positive values of outcome
that are significantly different from zero at 5%; light-blue for positive values of outcome that
are not significantly different from zero at 5%. Panel B refers to the estimates for the gradient

∂∆̂ lnAit

/
∂D lnAit−1 where the red lines mark the 95% confidence interval.



Figure 2: Positive and Significant Spillovers - Semiparametric

Note: The above figure plots the fractions of observations within 25 equally sized bins of
D lnAit−1 for which the semiparametric estimator predicts a significantly positive gradient

∂∆̂ lnAit

/
∂D lnAit−1.



Figure 3: Nonparametric Spillovers

A. TFP Growth

B. TFP Gradient

Note: The estimates base on a sample of 41,580 observations. Panel A illustrates the estimates
for the level ∆ lnAit where we use the following coloring: dark-red for for negative values of
outcome that are significantly different from zero at 5%; light-red for negative values of outcome
that are not significantly different from zero at 5%; dark-blue for positive values of outcome
that are significantly different from zero at 5%; light-blue for positive values of outcome that
are not significantly different from zero at 5%. Panel B refers to the estimates for the gradient

∂∆̂ lnAit

/
∂D lnAit−1 using the same coloring as in Panel A.



Figure 4: Positive and Significant Spillovers - Nonparametric

A. Technology Gap

B. Human Capital

Note: Panel A plots the fractions of observations within 25 equally sized bins of
D lnAit−1 for which the semiparametric estimator predicts a significantly positive gradient

∂∆̂ lnAit

/
∂D lnAit−1. Panel B plots these fractions against 25 equally sized bins of Hit−1.
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